A Student s Guide to Python for Physical Modeling

Author: Jesse M. Kinder
Publisher: Princeton University Press
ISBN: 1400889421
Format: PDF, ePub
Download Now
A fully updated tutorial on the basics of the Python programming language for science students Python is a computer programming language that is rapidly gaining popularity throughout the sciences. This fully updated edition of A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This tutorial focuses on fundamentals and introduces a wide range of useful techniques, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Animation Numerous code samples and exercises--with solutions—illustrate new ideas as they are introduced. Web-based resources also accompany this guide and include code samples, data sets, and more. This current edition brings the discussion of the Python language, Spyder development environment, and Anaconda distribution up to date. In addition, a new appendix introduces Jupyter notebooks.

A Student s Guide to Python for Physical Modeling

Author: Jesse M. Kinder
Publisher:
ISBN: 9780691180571
Format: PDF, Kindle
Download Now
A fully updated tutorial on the basics of the Python programming language for science students Python is a computer programming language that is rapidly gaining popularity throughout the sciences. This fully updated edition of A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This tutorial focuses on fundamentals and introduces a wide range of useful techniques, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Animation Numerous code samples and exercises--with solutions--illustrate new ideas as they are introduced. Web-based resources also accompany this guide and include code samples, data sets, and more. This current edition brings the discussion of the Python language, Spyder development environment, and Anaconda distribution up to date. In addition, a new appendix introduces Jupyter notebooks.

A Student s Guide to Python for Physical Modeling

Author: Jesse M. Kinder
Publisher: Princeton University Press
ISBN: 1400873983
Format: PDF, Kindle
Download Now
Python is a computer programming language that is rapidly gaining popularity throughout the sciences. A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This tutorial focuses on fundamentals and introduces a wide range of useful techniques, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Animation Numerous code samples and exercises—with solutions—illustrate new ideas as they are introduced. Web-based resources also accompany this guide and include code samples, data sets, and more.

Physical Models of Living Systems

Author: Philip Nelson
Publisher: Macmillan Higher Education
ISBN: 1319036902
Format: PDF, ePub, Mobi
Download Now
Written for intermediate-level undergraduates pursuing any science or engineering major, Physical Models of Living Systems helps students develop many of the competencies that form the basis of the new MCAT2015. The only prerequisite is first-year physics. With the more advanced "Track-2" sections at the end of each chapter, the book can be used in graduate-level courses as well.

Effective Computation in Physics

Author: Anthony Scopatz
Publisher: "O'Reilly Media, Inc."
ISBN: 1491901586
Format: PDF
Download Now
More physicists today are taking on the role of software developer as part of their research, but software development isn’t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. You’ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures

From Photon to Neuron

Author: Philip Nelson
Publisher:
ISBN: 9780691175188
Format: PDF, Kindle
Download Now
Students in the physical and life sciences, and in engineering, need to know about the physics and biology of light. Recently, it has become increasingly clear that an understanding of the quantum nature of light is essential, both for the latest imaging technologies and to advance our knowledge of fundamental life processes, such as photosynthesis and human vision. From Photon to Neuron provides undergraduates with an accessible introduction to the physics of light and offers a unified view of a broad range of optical and biological phenomena. Along the way, this richly illustrated textbook builds the necessary background in neuroscience, photochemistry, and other disciplines, with applications to optogenetics, superresolution microscopy, the single-photon response of individual photoreceptor cells, and more. With its integrated approach, From Photon to Neuron can be used as the basis for interdisciplinary courses in physics, biophysics, sensory neuroscience, biophotonics, bioengineering, or nanotechnology. The goal is always for students to gain the fluency needed to derive every result for themselves, so the book includes a wealth of exercises, including many that guide students to create computer-based solutions. Supplementary online materials include real experimental data to use with the exercises. Assumes familiarity with first-year undergraduate physics and the corresponding math Overlaps the goals of the MCAT, which now includes data-based and statistical reasoning Advanced chapters and sections also make the book suitable for graduate courses An Instructor's Guide and illustration package is available to professors

Computer Simulation

Author: Yahya Esmail Osais
Publisher: CRC Press
ISBN: 1498726836
Format: PDF, Kindle
Download Now
Computer simulation is an effective and popular universal tool that can be applied to almost all disciplines. Requiring only basic knowledge of programming, mathematics, and probability theory, Computer Simulation: A Foundational Approach Using Python takes a hands-on approach to programming to introduce the fundamentals of computer simulation. Typically, simulation involves two key steps: modeling and implementation. In this book, these processes are divided to minimize confusion and help introductory students grasp the transition to stochastic simulation. Modeling is covered in the first half of each chapter and is presented with event graphs and design of experiments. Then, as a tool of choice for scientists and engineers, Python programs are used throughout the book to help students implement their knowledge. The chapters are aided by a heavy use of Illustrations, and many examples are provided to re-enforce the concepts presented. The book also features a full chapter of case studies, as well as real working code, encouraging students to compare results obtained from simulation with those obtained using analytical methods. Additionally, most of the necessary mathematics is abstracted by procedures that show how the mathematical techniques can be implemented in the real world. This helps make the shift from models to programs straightforward. Some other features of this book are: Simulation programs are divided into two distinct components: simulator and model. Both simulation without an event list and with an event list are covered. The single-queue single-server queuing system is used as a running example throughout the book A complete chapter on the Monte Carlo method and variance-reduction techniques are included. The main target of the book is computer science and engineering students who are interested mainly in directly applying the techniques to their research problems. The book will be of great interest to senior undergraduate and starting graduate students in the fields of computer science and engineering and industrial engineering.

Learning Scientific Programming with Python

Author: Christian Hill
Publisher: Cambridge University Press
ISBN: 1107075416
Format: PDF
Download Now
Learn to master basic programming tasks from scratch with real-life scientific examples in this complete introduction to Python.

Introduction to Modeling and Simulation with MATLAB and Python

Author: Steven I. Gordon
Publisher: CRC Press
ISBN: 1498773907
Format: PDF, ePub
Download Now
Introduction to Modeling and Simulation with MATLAB and Python is intended for students and professionals in science, social science, and engineering that wish to learn the principles of computer modeling, as well as basic programming skills. The book content focuses on meeting a set of basic modeling and simulation competencies that were developed as part of several National Science Foundation grants. Even though computer science students are much more expert programmers, they are not often given the opportunity to see how those skills are being applied to solve complex science and engineering problems and may also not be aware of the libraries used by scientists to create those models. The book interleaves chapters on modeling concepts and related exercises with programming concepts and exercises. The authors start with an introduction to modeling and its importance to current practices in the sciences and engineering. They introduce each of the programming environments and the syntax used to represent variables and compute mathematical equations and functions. As students gain more programming expertise, the authors return to modeling concepts, providing starting code for a variety of exercises where students add additional code to solve the problem and provide an analysis of the outcomes. In this way, the book builds both modeling and programming expertise with a "just-in-time" approach so that by the end of the book, students can take on relatively simple modeling example on their own. Each chapter is supplemented with references to additional reading, tutorials, and exercises that guide students to additional help and allows them to practice both their programming and analytical modeling skills. In addition, each of the programming related chapters is divided into two parts – one for MATLAB and one for Python. In these chapters, the authors also refer to additional online tutorials that students can use if they are having difficulty with any of the topics. The book culminates with a set of final project exercise suggestions that incorporate both the modeling and programming skills provided in the rest of the volume. Those projects could be undertaken by individuals or small groups of students. The companion website at http://www.intromodeling.com provides updates to instructions when there are substantial changes in software versions, as well as electronic copies of exercises and the related code. The website also offers a space where people can suggest additional projects they are willing to share as well as comments on the existing projects and exercises throughout the book. Solutions and lecture notes will also be available for qualifying instructors.

Numerical Python

Author: Robert Johansson
Publisher: Apress
ISBN: 1484205537
Format: PDF, ePub, Docs
Download Now
Numerical Python by Robert Johansson shows you how to leverage the numerical and mathematical modules in Python and its Standard Library as well as popular open source numerical Python packages like NumPy, FiPy, matplotlib and more to numerically compute solutions and mathematically model applications in a number of areas like big data, cloud computing, financial engineering, business management and more. After reading and using this book, you'll get some takeaway case study examples of applications that can be found in areas like business management, big data/cloud computing, financial engineering (i.e., options trading investment alternatives), and even games. Up until very recently, Python was mostly regarded as just a web scripting language. Well, computational scientists and engineers have recently discovered the flexibility and power of Python to do more. Big data analytics and cloud computing programmers are seeing Python's immense use. Financial engineers are also now employing Python in their work. Python seems to be evolving as a language that can even rival C++, Fortran, and Pascal/Delphi for numerical and mathematical computations.