Complex Analysis

Author: John Stalker
Publisher: Springer Science & Business Media
ISBN: 0817649190
Format: PDF, Mobi
Download Now
All modem introductions to complex analysis follow, more or less explicitly, the pattern laid down in Whittaker and Watson [75]. In "part I'' we find the foundational material, the basic definitions and theorems. In "part II" we find the examples and applications. Slowly we begin to understand why we read part I. Historically this is an anachronism. Pedagogically it is a disaster. Part II in fact predates part I, so clearly it can be taught first. Why should the student have to wade through hundreds of pages before finding out what the subject is good for? In teaching complex analysis this way, we risk more than just boredom. Beginning with a series of unmotivated definitions gives a misleading impression of complex analy sis in particular and of mathematics in general. The classical theory of analytic functions did not arise from the idle speculation of bored mathematicians on the possible conse quences of an arbitrary set of definitions; it was the natural, even inevitable, consequence of the practical need to answer questions about specific examples. In standard texts, after hundreds of pages of theorems about generic analytic functions with only the rational and trigonometric functions as examples, students inevitably begin to believe that the purpose of complex analysis is to produce more such theorems. We require introductory com plex analysis courses of our undergraduates and graduates because it is useful both within mathematics and beyond.

Lectures on Complex Integration

Author: Alexander O. Gogolin
Publisher: Springer Science & Business Media
ISBN: 3319002120
Format: PDF, Kindle
Download Now
The theory of complex functions is a strikingly beautiful and powerful area of mathematics. Some particularly fascinating examples are seemingly complicated integrals which are effortlessly computed after reshaping them into integrals along contours, as well as apparently difficult differential and integral equations, which can be elegantly solved using similar methods. To use them is sometimes routine but in many cases it borders on an art. The goal of the book is to introduce the reader to this beautiful area of mathematics and to teach him or her how to use these methods to solve a variety of problems ranging from computation of integrals to solving difficult integral equations. This is done with a help of numerous examples and problems with detailed solutions.

Mathematics for the Analysis of Algorithms

Author: Daniel H. Greene
Publisher: Springer Science & Business Media
ISBN: 0817647295
Format: PDF, ePub
Download Now
This monograph collects some fundamental mathematical techniques that are required for the analysis of algorithms. It builds on the fundamentals of combinatorial analysis and complex variable theory to present many of the major paradigms used in the precise analysis of algorithms, emphasizing the more difficult notions. The authors cover recurrence relations, operator methods, and asymptotic analysis in a format that is concise enough for easy reference yet detailed enough for those with little background with the material.

Linear Differential Equations and Group Theory from Riemann to Poincare

Author: Jeremy Gray
Publisher: Springer Science & Business Media
ISBN: 0817647732
Format: PDF, ePub, Mobi
Download Now
This book is a study of how a particular vision of the unity of mathematics, often called geometric function theory, was created in the 19th century. The central focus is on the convergence of three mathematical topics: the hypergeometric and related linear differential equations, group theory, and on-Euclidean geometry. The text for this second edition has been greatly expanded and revised, and the existing appendices enriched. The exercises have been retained, making it possible to use the book as a companion to mathematics courses at the graduate level.

Complex Analysis in one Variable

Author: NARASIMHAN
Publisher: Springer Science & Business Media
ISBN: 1475711069
Format: PDF, ePub
Download Now
This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.

An introduction to complex analysis

Author: O. Carruth McGehee
Publisher: Wiley-Interscience
ISBN: 9780471332336
Format: PDF, ePub
Download Now
* Contains over 100 sophisticated graphics to provide helpful examples and reinforce important concepts

A Course in Analysis

Author: Niels Jacob
Publisher: World Scientific Publishing Company
ISBN: 9813221712
Format: PDF, Docs
Download Now
In this third volume of "A Course in Analysis", two topics indispensible for every mathematician are treated: Measure and Integration Theory; and Complex Function Theory. In the first part measurable spaces and measure spaces are introduced and Caratheodory's extension theorem is proved. This is followed by the construction of the integral with respect to a measure, in particular with respect to the Lebesgue measure in the Euclidean space. The Radon–Nikodym theorem and the transformation theorem are discussed and much care is taken to handle convergence theorems with applications, as well as Lp-spaces. Integration on product spaces and Fubini's theorem is a further topic as is the discussion of the relation between the Lebesgue integral and the Riemann integral. In addition to these standard topics we deal with the Hausdorff measure, convolutions of functions and measures including the Friedrichs mollifier, absolutely continuous functions and functions of bounded variation. The fundamental theorem of calculus is revisited, and we also look at Sard's theorem or the Riesz–Kolmogorov theorem on pre-compact sets in Lp-spaces. The text can serve as a companion to lectures, but it can also be used for self-studying. This volume includes more than 275 problems solved completely in detail which should help the student further. Contents: Measure and Integration Theory:First Look at σ-Fields and MeasuresExtending Pre-Measures. Carathéodory's TheoremThe Lebesgue-Borel Measure and Hausdorff MeasuresMeasurable MappingsIntegration with Respect to a Measure — The Lebesgue IntegralThe Radon-Nikodym Theorem and the Transformation TheoremAlmost Everywhere Statements, Convergence TheoremsApplications of the Convergence Theorems and MoreIntegration on Product Spaces and ApplicationsConvolutions of Functions and MeasuresDifferentiation RevisitedSelected TopicsComplex-Valued Functions of a Complex Variable:The Complex Numbers as a Complete FieldA Short Digression: Complex-Valued MappingsComplex Numbers and GeometryComplex-Valued Functions of a Complex VariableComplex DifferentiationSome Important FunctionsSome More TopologyLine Integrals of Complex-Valued FunctionsThe Cauchy Integral Theorem and Integral FormulaPower Series, Holomorphy and Differential EquationsFurther Properties of Holomorphic FunctionsMeromorphic FunctionsThe Residue TheoremThe Γ-Function, The ζ-Function and Dirichlet SeriesElliptic Integrals and Elliptic FunctionsThe Riemann Mapping TheoremPower Series in Several VariablesAppendices:More on Point Set TopologyMeasure Theory, Topology and Set TheoryMore on Möbius TransformationsBernoulli Numbers Readership: Undergraduate students in mathematics.

A Friendly Guide to Wavelets

Author: Gerald Kaiser
Publisher: Springer Science & Business Media
ISBN: 9780817681111
Format: PDF, Mobi
Download Now
This volume is designed as a textbook for an introductory course on wavelet analysis and time-frequency analysis aimed at graduate students or advanced undergraduates in science and engineering. It can also be used as a self-study or reference book by practicing researchers in signal analysis and related areas. Since the expected audience is not presumed to have a high level of mathematical background, much of the needed analytical machinery is developed from the beginning. The only prerequisites for the first eight chapters are matrix theory, Fourier series, and Fourier integral transforms. Each of these chapters ends with a set of straightforward exercises designed to drive home the concepts just covered, and the many graphics should further facilitate absorption.

The Implicit Function Theorem

Author: Steven G. Krantz
Publisher: Springer Science & Business Media
ISBN: 1461459818
Format: PDF, ePub, Mobi
Download Now
The implicit function theorem is part of the bedrock of mathematical analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for Ck functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth function, and (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash–Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present uncorrected reprint of this classic monograph. ​ Originally published in 2002, The Implicit Function Theorem is an accessible and thorough treatment of implicit and inverse function theorems and their applications. It will be of interest to mathematicians, graduate/advanced undergraduate students, and to those who apply mathematics. The book unifies disparate ideas that have played an important role in modern mathematics. It serves to document and place in context a substantial body of mathematical ideas.​

Advanced Calculus

Author: Harold M. Edwards
Publisher: Springer Science & Business Media
ISBN: 146120271X
Format: PDF, Kindle
Download Now
This book is a high-level introduction to vector calculus based solidly on differential forms. Informal but sophisticated, it is geometrically and physically intuitive yet mathematically rigorous. It offers remarkably diverse applications, physical and mathematical, and provides a firm foundation for further studies.