Environmental Modelling

Author: Keith Beven
Publisher: CRC Press
ISBN: 020393248X
Format: PDF, Mobi
Download Now
Uncertainty in the predictions of science when applied to the environment is an issue of great current relevance in relation to the impacts of climate change, protecting against natural and man-made disasters, pollutant transport and sustainable resource management. However, it is often ignored both by scientists and decision makers, or interpreted as a conflict or disagreement between scientists. This is not necessarily the case, the scientists might well agree, but their predictions would still be uncertain and knowledge of that uncertainty might be important in decision making. Environmental Modelling: An Uncertain Future? introduces students, scientists and decision makers to: the different concepts and techniques of uncertainty estimation in environmental prediction the philosophical background to different concepts of uncertainty the constraint of uncertainties by the collection of observations and data assimilation in real-time forecasting techniques for decision making under uncertainty. This book will be relevant to environmental modellers, practitioners and decision makers in hydrology, hydraulics, ecology, meteorology and oceanography, geomorphology, geochemistry, soil science, pollutant transport and climate change. A companion website for the book can be found at www.uncertain-future.org.uk

Model Calibration and Parameter Estimation

Author: Ne-Zheng Sun
Publisher: Springer
ISBN: 1493923234
Format: PDF
Download Now
This three-part book provides a comprehensive and systematic introduction to these challenging topics such as model calibration, parameter estimation, reliability assessment, and data collection design. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get familiar with advanced methods for modeling complex systems. Algorithms for mathematical tools used in this book, such as numerical optimization, automatic differentiation, adaptive parameterization, hierarchical Bayesian, metamodeling, Markov chain Monte Carlo, are covered in details. This book can be used as a reference for graduate and upper level undergraduate students majoring in environmental engineering, hydrology, and geosciences. It also serves as an essential reference book for professionals such as petroleum engineers, mining engineers, chemists, mechanical engineers, biologists, biology and medical engineering, applied mathematicians, and others who perform mathematical modeling.

Applied Groundwater Modeling

Author: Mary P. Anderson
Publisher: Academic Press
ISBN: 0080916384
Format: PDF, ePub, Docs
Download Now
This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies. Explains how to formulate a conceptual model of a groundwater system and translate it into a numerical model Demonstrates how modeling concepts, including boundary conditions, are implemented in two groundwater flow codes-- MODFLOW (for finite differences) and FEFLOW (for finite elements) Discusses particle tracking methods and codes for flowpath analysis and advective transport of contaminants Summarizes parameter estimation and uncertainty analysis approaches using the code PEST to illustrate how concepts are implemented Discusses modeling ethics and preparation of the modeling report Includes Boxes that amplify and supplement topics covered in the text Each chapter presents lists of common modeling errors and problem sets that illustrate concepts

Natural Catastrophe Risk Management and Modelling

Author: Kirsten Mitchell-Wallace
Publisher: John Wiley & Sons
ISBN: 1118906063
Format: PDF, Mobi
Download Now
This book covers both the practical and theoretical aspects of catastrophe modelling for insurance industry practitioners and public policymakers. Written by authors with both academic and industry experience it also functions as an excellent graduate-level text and overview of the field. Ours is a time of unprecedented levels of risk from both natural and anthropogenic sources. Fortunately, it is also an era of relatively inexpensive technologies for use in assessing those risks. The demand from both commercial and public interests—including (re)insurers, NGOs, global disaster management agencies, and local authorities—for sophisticated catastrophe risk assessment tools has never been greater, and contemporary catastrophe modelling satisfies that demand. Combining the latest research with detailed coverage of state-of-the-art catastrophe modelling techniques and technologies, this book delivers the knowledge needed to use, interpret, and build catastrophe models, and provides greater insight into catastrophe modelling’s enormous potential and possible limitations. The first book containing the detailed, practical knowledge needed to support practitioners as effective catastrophe risk modellers and managers Includes hazard, vulnerability and financial material to provide the only independent, comprehensive overview of the subject, accessible to students and practitioners alike Demonstrates the relevance of catastrophe models within a practical, decision-making framework and illustrates their many applications Includes contributions from many of the top names in the field, globally, from industry, academia, and government Natural Catastrophe Risk Management and Modelling: A Practitioner’s Guide is an important working resource for catastrophe modelling analysts and developers, actuaries, underwriters, and those working in compliance or regulatory functions related to catastrophe risk. It is also valuable for scientists and engineers seeking to gain greater insight into catastrophe risk management and its applications.

Integrated Environmental Modelling to Solve Real World Problems

Author: A.T. Riddick
Publisher: Geological Society of London
ISBN: 1862396876
Format: PDF, ePub, Docs
Download Now
The discipline of Integrated Environmental Modelling (IEM) has developed in order to solve complex environmental problems, for example understanding the impacts of climate change on the physical environment. IEM provides methods to fuse or link models together, this in turn requires facilities to make models discoverable and also to make the outputs of modelling easily visualized. The vision and challenges for IEM going forward are summarized by leading proponents. Several case studies describe the application of model fusion to a range of real-world problems including integrating groundwater and recharge models within the UK Environment Agency, and the development of ‘catastrophe’ models to predict better the impact of natural hazards. Communicating modelling results to end users who are often not specialist modellers is also an emerging area of research addressed within the volume. Also included are papers that highlight current developments of the technology platforms underpinning model fusion.

Sensitivity Analysis in Earth Observation Modelling

Author: George Petropoulos
Publisher: Elsevier
ISBN: 0128030313
Format: PDF, Mobi
Download Now
Sensitivity Analysis in Earth Observation Modeling highlights the state-of-the-art in ongoing research investigations and new applications of sensitivity analysis in earth observation modeling. In this framework, original works concerned with the development or exploitation of diverse methods applied to different types of earth observation data or earth observation-based modeling approaches are included. An overview of sensitivity analysis methods and principles is provided first, followed by examples of applications and case studies of different sensitivity/uncertainty analysis implementation methods, covering the full spectrum of sensitivity analysis techniques, including operational products. Finally, the book outlines challenges and future prospects for implementation in earth observation modeling. Information provided in this book is of practical value to readers looking to understand the principles of sensitivity analysis in earth observation modeling, the level of scientific maturity in the field, and where the main limitations or challenges are in terms of improving our ability to implement such approaches in a wide range of applications. Readers will also be informed on the implementation of sensitivity/uncertainty analysis on operational products available at present, on global and continental scales. All of this information is vital in the selection process of the most appropriate sensitivity analysis method to implement. Outlines challenges and future prospects of sensitivity analysis implementation in earth observation modeling Provides readers with a roadmap for directing future efforts Includes case studies with applications from different regions around the globe, helping readers to explore strengths and weaknesses of the different methods in earth observation modeling Presents a step-by-step guide, providing the principles of each method followed by the application of variants, making the reference easy to use and follow

Environmental Modelling

Author: John Wainwright
Publisher: John Wiley & Sons
ISBN: 1118351487
Format: PDF, ePub, Docs
Download Now
Simulation models are an established method used to investigate processes and solve practical problems in a wide variety of disciplines. Central to the concept of this second edition is the idea that environmental systems are complex, open systems. The authors present the diversity of approaches to dealing with environmental complexity and then encourage readers to make comparisons between these approaches and between different disciplines. Environmental Modelling: Finding Simplicity in Complexity 2nd edition is divided into four main sections: An overview of methods and approaches to modelling. State of the art for modelling environmental processes Tools used and models for management Current and future developments. The second edition evolves from the first by providing additional emphasis and material for those students wishing to specialize in environmental modelling. This edition: Focuses on simplifying complex environmental systems. Reviews current software, tools and techniques for modelling. Gives practical examples from a wide variety of disciplines, e.g. climatology, ecology, hydrology, geomorphology and engineering. Has an associated website containing colour images, links to WWW resources and chapter support pages, including data sets relating to case studies, exercises and model animations. This book is suitable for final year undergraduates and postgraduates in environmental modelling, environmental science, civil engineering and biology who will already be familiar with the subject and are moving on to specialize in the field. It is also designed to appeal to professionals interested in the environmental sciences, including environmental consultants, government employees, civil engineers, geographers, ecologists, meteorologists, and geochemists.

Completing the Forecast

Author: Committee on Estimating and Communicating Uncertainty in Weather and Climate Forecasts
Publisher: National Academies Press
ISBN: 0309102553
Format: PDF, ePub
Download Now
Uncertainty is a fundamental characteristic of weather, seasonal climate, and hydrological prediction, and no forecast is complete without a description of its uncertainty. Effective communication of uncertainty helps people better understand the likelihood of a particular event and improves their ability to make decisions based on the forecast. Nonetheless, for decades, users of these forecasts have been conditioned to receive incomplete information about uncertainty. They have become used to single-valued (deterministic) forecasts (e.g., "the high temperature will be 70 degrees Farenheit 9 days from now") and applied their own experience in determining how much confidence to place in the forecast. Most forecast products from the public and private sectors, including those from the National Oceanographic and Atmospheric Administration's National Weather Service, continue this deterministic legacy. Fortunately, the National Weather Service and others in the prediction community have recognized the need to view uncertainty as a fundamental part of forecasts. By partnering with other segments of the community to understand user needs, generate relevant and rich informational products, and utilize effective communication vehicles, the National Weather Service can take a leading role in the transition to widespread, effective incorporation of uncertainty information into predictions. "Completing the Forecast" makes recommendations to the National Weather Service and the broader prediction community on how to make this transition.