Flow Deformation and Fracture

Author: G. I. Barenblatt
Publisher: Cambridge University Press
ISBN: 0521887526
Format: PDF, Mobi
Download Now
Over forty years of teaching experience are distilled into this text. The guiding principle is the wide use of the concept of intermediate asymptotics, which enables the natural introduction of the modeling of real bodies by continua. Beginning with a detailed explanation of the continuum approximation for the mathematical modeling of the motion and equilibrium of real bodies, the author continues with a general survey of the necessary methods and tools for analyzing models. Next, specific idealized approximations are presented, including ideal incompressible fluids, elastic bodies and Newtonian viscous fluids. The author not only presents general concepts but also devotes chapters to examining significant problems, including turbulence, wave-propagation, defects and cracks, fatigue and fracture. Each of these applications reveals essential information about the particular approximation. The author's tried and tested approach reveals insights that will be valued by every teacher and student of mechanics.

Scaling Self similarity and Intermediate Asymptotics

Author: G. I. Barenblatt
Publisher: Cambridge University Press
ISBN: 9780521435222
Format: PDF, Kindle
Download Now
Scaling (power-type) laws reveal the fundamental property of the phenomena--self similarity. Self-similar (scaling) phenomena repeat themselves in time and/or space. The property of self-similarity simplifies substantially the mathematical modeling of phenomena and its analysis--experimental, analytical and computational. The book begins from a non-traditional exposition of dimensional analysis, physical similarity theory and general theory of scaling phenomena. Classical examples of scaling phenomena are presented. It is demonstrated that scaling comes on a stage when the influence of fine details of initial and/or boundary conditions disappeared but the system is still far from ultimate equilibrium state (intermediate asymptotics). It is explained why the dimensional analysis as a rule is insufficient for establishing self-similarity and constructing scaling variables. Important examples of scaling phenomena for which the dimensional analysis is insufficient (self-similarities of the second kind) are presented and discussed. A close connection of intermediate asymptotics and self-similarities of the second kind with a fundamental concept of theoretical physics, the renormalization group, is explained and discussed. Numerous examples from various fields--from theoretical biology to fracture mechanics, turbulence, flame propagation, flow in porous strata, atmospheric and oceanic phenomena are presented for which the ideas of scaling, intermediate asymptotics, self-similarity and renormalization group were of decisive value in modeling.

Applied Solid Mechanics

Author: Peter Howell
Publisher: Cambridge University Press
ISBN: 052185489X
Format: PDF, Mobi
Download Now
Emphasises the power of mathematics to provide quantitative insights across the whole area of solid mechanics; accessible and comprehensive.

B nard Cells and Taylor Vortices

Author: E. L. Koschmieder
Publisher: Cambridge University Press
ISBN: 9780521402040
Format: PDF
Download Now
This book describes the motions resulting from heating a fluid layer from below.

Topological Fluid Mechanics

Author: H. K. Moffatt
Publisher: Cambridge University Press
ISBN: 9780521381451
Format: PDF, ePub
Download Now
There has been developing interest in the aspects of fluid mechanics and of magnetohydrodynamics that can be properly described as topological, rather than exclusively analytical in character. This book contains the proceedings of the IUTAM symposium on Topological Fluid Mechanics held at Cambridge UK, 13-18 August, 1989. Topics covered include the kinematic and dynamical problems in laminar and turbulent flows, as well as the range of problems that arise from the magnetohydrodynamics of highly conducting flows. The papers presented cover all approaches; theoretical, computational and experimental, and each paper has been edited by a member of the International Scientific Committee.

Flow Past Highly Compliant Boundaries and in Collapsible Tubes

Author: Peter W. Carpenter
Publisher: Springer Science & Business Media
ISBN: 9781402011610
Format: PDF
Download Now
The IUTAM Symposium on Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries was held on 26-30 March, 2001, at the University of Warwick. As this was the first scientific meeting of its kind we considered it important to mark the occasion by producing a book. Accordingly, at the end of the Symposium the Scientific Committee met to discuss the most appropriate format for the book. We wished to avoid the format of the conventional conference book consisting of a large number of short articles of varying quality. It was agreed that instead we should produce a limited number of rigorously refereed and edited articles by selected participants who would aim to sum up the state of the art in their particular research area. The outcome is the present book. Peter W. Ca rpenter, Warwick Timothy J. Pedley, Cambridge May, 2002. VB SCIENTIFIC COMMITTEE Co-Chair: P.W. Carpenter, Engineering, Warwiek, UK Co-Chair: TJ. Pedley, DAMTP, Cambridge, UK V.V. Babenko, Hydromechanics, Kiev, Ukraine R. Bannasch, Bionik & Evolutionstechnik, TU Berlin, Germany C.D. Bertram, Biomedical Engineering, New South Wales, Australia M. Gad-el-Hak, Aerospace & Mechanical Engineering, Notre Dame, USA J.B. Grotberg, Biomedical Engineering, Michigan, USA. R.D. Kamm, Mechanical Engineering, MIT, USA Y. Matsuzaki, Aerospace Engineering, N agoya, Japan P.K. Sen, Applied Mechanics, IIT Delhi, India L. van Wijngaarden, Twente, Netherlands K-S. Yeo, Mechanical Engineering, NU Singapore.

An Idiot s Fugitive Essays on Science

Author: C. Truesdell
Publisher: Springer Science & Business Media
ISBN: 1461381851
Format: PDF, Docs
Download Now
When, after the agreeable fatigues of solicitation, Mrs Millamant set out a long bill of conditions subject to which she might by degrees dwindle into a wife, Mirabell offered in return the condition that he might not thereby be beyond measure enlarged into a husband. With age and experience in research come the twin dangers of dwindling into a philosopher of science while being enlarged into a dotard. The philosophy of science, I believe, should not be the preserve of senile scientists and of teachers of philosophy who have themselves never so much as understood the contents of a textbook of theoretical physics, let alone done a bit of mathematical research or even enjoyed the confidence of a creating scientist. On the latter count I run no risk: Any reader will see that I am untrained (though not altogether unread) in classroom philosophy. Of no ignorance of mine do I boast, indeed I regret it, but neither do I find this one ignorance fatal here, for few indeed of the great philosophers to explicate whose works hodiernal professors of phil osophy destroy forests of pulp were themselves so broadly and specially trained as are their scholiasts. In attempt to palliate the former count I have chosen to collect works written over the past thirty years, some of them not published before, and I include only a few very recent essays.

Fluid Physics in Geology

Author: David Jon Furbish
Publisher: Oxford University Press on Demand
ISBN: 0195077016
Format: PDF, Docs
Download Now
Fluid Physics in Geology is a fluid mechanics text for geologists; it provides an introductory treatment of the physical and dynamical behaviour of fluids, aimed at students who need to understand fluid behaviour and motion in the context of a wide variety of geological problems.

Rock Fractures and Fluid Flow

Author: Committee on Fracture Characterization and Fluid Flow
Publisher: National Academies Press
ISBN: 0309049962
Format: PDF, Kindle
Download Now
Scientific understanding of fluid flow in rock fractures--a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storage--has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.