Handbook of Combinatorial Designs Second Edition

Author: Charles J. Colbourn
Publisher: CRC Press
ISBN: 9781439832349
Format: PDF, ePub, Mobi
Download Now
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.

Handbook of Combinatorial Designs

Author: C. J. Colbourn
Publisher: Chapman and Hall/CRC
ISBN: 9781584885061
Format: PDF, ePub
Download Now
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.

Handbook of Discrete and Combinatorial Mathematics Second Edition

Author: Kenneth H. Rosen
Publisher: CRC Press
ISBN: 135164405X
Format: PDF, ePub, Mobi
Download Now
Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.

Introduction to Combinatorial Designs Second Edition

Author: W.D. Wallis
Publisher: Chapman and Hall/CRC
ISBN: 9781584888383
Format: PDF, ePub, Docs
Download Now
Combinatorial theory is one of the fastest growing areas of modern mathematics. Focusing on a major part of this subject, Introduction to Combinatorial Designs, Second Edition provides a solid foundation in the classical areas of design theory as well as in more contemporary designs based on applications in a variety of fields. After an overview of basic concepts, the text introduces balanced designs and finite geometries. The author then delves into balanced incomplete block designs, covering difference methods, residual and derived designs, and resolvability. Following a chapter on the existence theorem of Bruck, Ryser, and Chowla, the book discusses Latin squares, one-factorizations, triple systems, Hadamard matrices, and Room squares. It concludes with a number of statistical applications of designs. Reflecting recent results in design theory and outlining several applications, this new edition of a standard text presents a comprehensive look at the combinatorial theory of experimental design. Suitable for a one-semester course or for self-study, it will prepare readers for further exploration in the field. To access supplemental materials for this volume, visit the author’s website at http://www.math.siu.edu/Wallis/designs

Design Theory Second Edition

Author: Charles C. Lindner
Publisher: CRC Press
ISBN: 9781420082975
Format: PDF, ePub, Docs
Download Now
Design Theory, Second Edition presents some of the most important techniques used for constructing combinatorial designs. It augments the descriptions of the constructions with many figures to help students understand and enjoy this branch of mathematics. This edition now offers a thorough development of the embedding of Latin squares and combinatorial designs. It also presents some pure mathematical ideas, including connections between universal algebra and graph designs. The authors focus on several basic designs, including Steiner triple systems, Latin squares, and finite projective and affine planes. They produce these designs using flexible constructions and then add interesting properties that may be required, such as resolvability, embeddings, and orthogonality. The authors also construct more complicated structures, such as Steiner quadruple systems. By providing both classical and state-of-the-art construction techniques, this book enables students to produce many other types of designs.

Handbook of Discrete and Computational Geometry Third Edition

Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1351645919
Format: PDF, ePub, Docs
Download Now
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in ?elds as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed signi?cantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young ?eld of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Combinatorics of Permutations Second Edition

Author: Miklos Bona
Publisher: CRC Press
ISBN: 1439850526
Format: PDF
Download Now
A Unified Account of Permutations in Modern Combinatorics A 2006 CHOICE Outstanding Academic Title, the first edition of this bestseller was lauded for its detailed yet engaging treatment of permutations. Providing more than enough material for a one-semester course, Combinatorics of Permutations, Second Edition continues to clearly show the usefulness of this subject for both students and researchers and is recommended for undergraduate libraries by the MAA. Expanded Chapters Much of the book has been significantly revised and extended. This edition includes a new section on alternating permutations and new material on multivariate applications of the exponential formula. It also discusses several important results in pattern avoidance as well as the concept of asymptotically normal distributions. New Chapter An entirely new chapter focuses on three sorting algorithms from molecular biology. This emerging area of combinatorics is known for its easily stated and extremely difficult problems, which sometimes can be solved using deep techniques from seemingly remote branches of mathematics. Additional Exercises and Problems All chapters in the second edition have more exercises and problems. Exercises are marked according to level of difficulty and many of the problems encompass results from the last eight years.

Elliptic Curves

Author: Lawrence C. Washington
Publisher: CRC Press
ISBN: 9781420071474
Format: PDF
Download Now
Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and applications of elliptic curves. New to the Second Edition Chapters on isogenies and hyperelliptic curves A discussion of alternative coordinate systems, such as projective, Jacobian, and Edwards coordinates, along with related computational issues A more complete treatment of the Weil and Tate–Lichtenbaum pairings Doud’s analytic method for computing torsion on elliptic curves over Q An explanation of how to perform calculations with elliptic curves in several popular computer algebra systems Taking a basic approach to elliptic curves, this accessible book prepares readers to tackle more advanced problems in the field. It introduces elliptic curves over finite fields early in the text, before moving on to interesting applications, such as cryptography, factoring, and primality testing. The book also discusses the use of elliptic curves in Fermat’s Last Theorem. Relevant abstract algebra material on group theory and fields can be found in the appendices.

Authentication Codes and Combinatorial Designs

Author: Dingyi Pei
Publisher: CRC Press
ISBN: 9781420003185
Format: PDF, ePub
Download Now
Researchers and practitioners of cryptography and information security are constantly challenged to respond to new attacks and threats to information systems. Authentication Codes and Combinatorial Designs presents new findings and original work on perfect authentication codes characterized in terms of combinatorial designs, namely strong partially balanced designs (SPBD). Beginning with examples illustrating the concepts of authentication schemes and combinatorial designs, the book considers the probability of successful deceptions followed by schemes involving three and four participants, respectively. From this point, the author constructs the perfect authentication schemes and explores encoding rules for such schemes in some special cases. Using rational normal curves in projective spaces over finite fields, the author constructs a new family of SPBD. He then presents some established combinatorial designs that can be used to construct perfect schemes, such as t-designs, orthogonal arrays of index unity, and designs constructed by finite geometry. The book concludes by studying definitions of perfect secrecy, properties of perfectly secure schemes, and constructions of perfect secrecy schemes with and without authentication. Supplying an appendix of construction schemes for authentication and secrecy schemes, Authentication Codes and Combinatorial Designs points to new applications of combinatorial designs in cryptography.

Discrete Mathematics with Proof

Author: Eric Gossett
Publisher: John Wiley & Sons
ISBN: 0470457937
Format: PDF
Download Now
"Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. - Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. - It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics."--Jacket.