Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues

Author: Valery V. Tuchin
Publisher: CRC Press
ISBN: 9781584889755
Format: PDF, Mobi
Download Now
Although noninvasive, continuous monitoring of glucose concentration in blood and tissues is one of the most challenging areas in medicine, a wide range of optical techniques has recently been designed to help develop robust noninvasive methods for glucose sensing. For the first time in book form, the Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues analyzes trends in noninvasive optical glucose sensing and discusses its impact on tissue optical properties. This handbook presents methods that improve the accuracy in glucose prediction based on infrared absorption spectroscopy, recent studies on the influence of acute hyperglycemia on cerebral blood flow, and the correlation between diabetes and the thermo-optical response of human skin. It examines skin glucose monitoring by near-infrared spectroscopy (NIR), fluorescence-based glucose biosensors, and a photonic crystal contact lens sensor. The contributors also explore problems of polarimetric glucose sensing in transparent and turbid tissues as well as offer a high-resolution optical technique for noninvasive, continuous, and accurate blood glucose monitoring and glucose diffusion measurement. Written by world-renowned experts in biomedical optics and biophotonics, this book gives a complete, state-of-the-art treatise on the design and applications of noninvasive optical methods and instruments for glucose sensing.

Physiology Biophysics and Biomedical Engineering

Author: Andrew W Wood
Publisher: Taylor & Francis
ISBN: 1466552794
Format: PDF, Docs
Download Now
Physiology, Biophysics and Biomedical Engineering provides a multidisciplinary understanding of biological phenomena and the instrumentation for monitoring these phenomena. It covers the physical phenomena of electricity, pressure, and flow along with the adaptation of the physics of the phenomena to the special conditions and constraints of biological systems. While the text focuses on human biological systems, some of the principles also apply to plants, bacteria, and other animals. The first section of the book presents a general introduction to physiological systems and describes specialized methods used to record electrical events from biological tissue. The next part examines molecules involved in cell transport and signaling as well as the proteins relevant in cells’ ability to contract and generate tension. The text goes on to cover the properties of the heart, blood, and circulation and the monitoring of cardiac and circulatory function. It then discusses the importance of the interrelationship of pressures and flows in organ systems, such as the lungs and kidneys, and details the organization and function of the nervous system. After focusing on the systems used to monitor signals, the book explores modeling, biomechanics, and emerging technologies, including the progressive miniaturization of sensors and actuators in biomedical engineering. Developed from the authors’ courses in medical biophysics and biomedical instrumentation, this book shows how biophysics and biomedical engineering have advanced modern medicine. It brings together the physical principles underlying human physiological processes and the physical methods used to monitor these processes. Requiring only basic mathematical knowledge, the text supplements mathematical formulae with qualitative explanations and illustrations to encourage an intuitive grasp on the processes discussed.

Nuclear Medicine Physics

Author: Joao Jose De Lima
Publisher: CRC Press
ISBN: 9781584887966
Format: PDF, ePub, Docs
Download Now
Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it describes the use of radiopharmaceuticals in molecular imaging, clinical, and research studies. The text then covers modern radiation detectors and measuring methods, including those used in nuclear imaging, as well as numerous imaging methodologies and models, such as two- and three-dimensional image reconstruction algorithms, data processing sequences, new nuclear oncology techniques, and physiological models of the central nervous system. It also introduces biological systems theory, nuclear medicine methods as systems theory procedures, and aspects of kinetic modeling. The final chapter explores dosimetry and the biological effects of ionizing radiation. With many new developments occurring in nuclear medicine, it is important to understand how advanced approaches are being used in emerging applications. Offering invaluable insight into this growth, Nuclear Medicine Physics provides in-depth descriptions of new radiolabeled biological drugs, new cell labeling techniques, new technical concepts in radiation detection, improvements in instrumentation, and much more.

Webb s Physics of Medical Imaging Second Edition

Author: M A Flower
Publisher: Taylor & Francis
ISBN: 146656895X
Format: PDF, ePub, Mobi
Download Now
Since the publication of the best-selling, highly acclaimed first edition, the technology and clinical applications of medical imaging have changed significantly. Gathering these developments into one volume, Webb’s Physics of Medical Imaging, Second Edition presents a thorough update of the basic physics, modern technology and many examples of clinical application across all the modalities of medical imaging. New to the Second Edition Extensive updates to all original chapters Coverage of state-of-the-art detector technology and computer processing used in medical imaging 11 new contributors in addition to the original team of authors Two new chapters on medical image processing and multimodality imaging More than 50 percent new examples and over 80 percent new figures Glossary of abbreviations, color insert and contents lists at the beginning of each chapter Keeping the material accessible to graduate students, this well-illustrated book reviews the basic physics underpinning imaging in medicine. It covers the major techniques of x-radiology, computerised tomography, nuclear medicine, ultrasound and magnetic resonance imaging, in addition to infrared, electrical impedance and optical imaging. The text also describes the mathematics of medical imaging, image processing, image perception, computational requirements and multimodality imaging.

Coherent Domain Optical Methods

Author: Valery V. Tuchin
Publisher: Springer Science & Business Media
ISBN: 9781402075766
Format: PDF, Kindle
Download Now
For the first time in one set of books, coherent-domain optical methods are discussed in the framework of various applications, which are characterized by a strong light scattering. A few chapters describe basic research containing the updated results on coherent and polarized light non-destructive interactions with a scattering medium, in particular, diffraction, interference, and speckle formation at multiple scattering. These chapters allow for understanding coherent-domain diagnostic techniques presented in later chapters. A large portion of Volume I is dedicated to analysis of various aspects of optical coherence tomography (OCT) - a very new and growing field of coherent optics. Two chapters on laser scanning confocal microscopy give insight to recent extraordinary results on in vivo imaging and compare the possibilities and achievements of confocol, excitation multiphoton, and OCT microscopy. This two volume reference contains descriptions of holography, interferometry and optical heterodyning techniques in their application for diagnostics of turbid materials. The most prospective methods of coherent and polarization optical imaging and spectroscopy, including polarization-sensitive optical coherent tomography, polarization diffusion wave spectroscopy, and elastic and quasi-elastic light scattering spectroscopies and image techniques, are presented.

Tissue Optics

Author: Valery Tuchin
Publisher:
ISBN: 9781628415162
Format: PDF, ePub, Docs
Download Now
This third edition of the biomedical optics classic Tissue Optics covers the continued intensive growth in tissue optics—in particular, the field of tissue diagnostics and imaging—that has occurred since 2007. As in the first two editions, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. However, for the reader’s convenience, this third edition has been reorganized into 14 chapters instead of 9. The chapters covering optical coherence tomography, digital holography and interferometry, controlling optical properties of tissues, nonlinear spectroscopy, and imaging have all been substantially updated. The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. It can also be used as a textbook for courses in medical physics, medical engineering, and medical biology.

Tissue Optics

Author: Valeriĭ Viktorovich Tuchin
Publisher: CCH
ISBN: 9780819464330
Format: PDF
Download Now
This second edition covers the intensive growth in tissue optics--in particular, the field of tissue diagnostics and imaging--that has occurred since 2000. As in the original edition, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. The extensive new material includes results on tissue optical property measurements, including polarized light interaction with turbid tissues; an overview of new polarization imaging and spectroscopy techniques, optical computed tomography (OCT) developments and applications; updates on controlling tissue optical properties, and the optothermal and optoacoustic interaction of light with tissues; and descriptions of fluorescence, nonlinear spectroscopies, and inelastic light scattering.

Medical Image Processing

Author: Geoff Dougherty
Publisher: Springer Science & Business Media
ISBN: 9781441997791
Format: PDF, ePub, Mobi
Download Now
The book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. The book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to ensure conceptual learning before introducing specific techniques and “tricks of the trade”. The book concentrates on a number of current research applications, and will present a detailed approach to each while emphasizing the applicability of techniques to other problems. The field of topics is wide, ranging from compressive (non-uniform) sampling in MRI, through automated retinal vessel analysis to 3-D ultrasound imaging and more. The book is amply illustrated with figures and applicable medical images. The reader will learn the techniques which experts in the field are currently employing and testing to solve particular research problems, and how they may be applied to other problems.

Handbook of Optical Biomedical Diagnostics

Author: Valeriĭ Viktorovich Tuchin
Publisher:
ISBN: 9781628419122
Format: PDF, ePub
Download Now
This text begins by describing the basic principles and diagnostic applications of optical techniques based on detecting and processing the scattering, fluorescence, FT IR, and Raman spectroscopic signals from various tissues, with an emphasis on blood, epithelial tissues, and human skin. The second half of the volume discusses specific imaging technologies, such as Doppler, laser speckle, optical coherence tomography (OCT), and fluorescence and photoacoustic imaging.