In All Likelihood

Author: Yudi Pawitan
Publisher: Oxford University Press
ISBN: 0199671222
Format: PDF, Mobi
Download Now
This book introduces likelihood as a unifying concept in statistical modelling and inference. The complete range of concepts and applications are covered, from very simple to very complex studies. It relies on realistic examples, and presents the main results using heuristic rather than formal mathematical arguments.

Statistical Evidence

Author: Richard Royall
Publisher: Routledge
ISBN: 1351414550
Format: PDF, Mobi
Download Now
Interpreting statistical data as evidence, Statistical Evidence: A Likelihood Paradigm focuses on the law of likelihood, fundamental to solving many of the problems associated with interpreting data in this way. Statistics has long neglected this principle, resulting in a seriously defective methodology. This book redresses the balance, explaining why science has clung to a defective methodology despite its well-known defects. After examining the strengths and weaknesses of the work of Neyman and Pearson and the Fisher paradigm, the author proposes an alternative paradigm which provides, in the law of likelihood, the explicit concept of evidence missing from the other paradigms. At the same time, this new paradigm retains the elements of objective measurement and control of the frequency of misleading results, features which made the old paradigms so important to science. The likelihood paradigm leads to statistical methods that have a compelling rationale and an elegant simplicity, no longer forcing the reader to choose between frequentist and Bayesian statistics.

Applied Statistical Inference

Author: Leonhard Held
Publisher: Springer Science & Business Media
ISBN: 3642378870
Format: PDF, ePub, Mobi
Download Now
This book covers modern statistical inference based on likelihood with applications in medicine, epidemiology and biology. Two introductory chapters discuss the importance of statistical models in applied quantitative research and the central role of the likelihood function. The rest of the book is divided into three parts. The first describes likelihood-based inference from a frequentist viewpoint. Properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic are discussed in detail. In the second part, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. Modern numerical techniques for Bayesian inference are described in a separate chapter. Finally two more advanced topics, model choice and prediction, are discussed both from a frequentist and a Bayesian perspective. A comprehensive appendix covers the necessary prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis.

Introduction to Statistical Inference

Author: Jack C. Kiefer
Publisher: Springer Science & Business Media
ISBN: 146139578X
Format: PDF, Mobi
Download Now
This book is based upon lecture notes developed by Jack Kiefer for a course in statistical inference he taught at Cornell University. The notes were distributed to the class in lieu of a textbook, and the problems were used for homework assignments. Relying only on modest prerequisites of probability theory and cal culus, Kiefer's approach to a first course in statistics is to present the central ideas of the modem mathematical theory with a minimum of fuss and formality. He is able to do this by using a rich mixture of examples, pictures, and math ematical derivations to complement a clear and logical discussion of the important ideas in plain English. The straightforwardness of Kiefer's presentation is remarkable in view of the sophistication and depth of his examination of the major theme: How should an intelligent person formulate a statistical problem and choose a statistical procedure to apply to it? Kiefer's view, in the same spirit as Neyman and Wald, is that one should try to assess the consequences of a statistical choice in some quan titative (frequentist) formulation and ought to choose a course of action that is verifiably optimal (or nearly so) without regard to the perceived "attractiveness" of certain dogmas and methods.

Maximum Likelihood Estimation and Inference

Author: Russell B. Millar
Publisher: John Wiley & Sons
ISBN: 1119977711
Format: PDF, ePub, Mobi
Download Now
This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

Probability Models

Author: John Haigh
Publisher: Springer Science & Business Media
ISBN: 144715343X
Format: PDF, ePub, Docs
Download Now
The purpose of this book is to provide a sound introduction to the study of real-world phenomena that possess random variation. It describes how to set up and analyse models of real-life phenomena that involve elements of chance. Motivation comes from everyday experiences of probability, such as that of a dice or cards, the idea of fairness in games of chance, and the random ways in which, say, birthdays are shared or particular events arise. Applications include branching processes, random walks, Markov chains, queues, renewal theory, and Brownian motion. This textbook contains many worked examples and several chapters have been updated and expanded for the second edition. Some mathematical knowledge is assumed. The reader should have the ability to work with unions, intersections and complements of sets; a good facility with calculus, including integration, sequences and series; and appreciation of the logical development of an argument. Probability Models is designed to aid students studying probability as part of an undergraduate course on mathematics or mathematics and statistics.

Essential Statistical Inference

Author: Dennis D. Boos
Publisher: Springer Science & Business Media
ISBN: 1461448182
Format: PDF, Mobi
Download Now
​This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems. An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology. Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. ​

Analysis of Incomplete Multivariate Data

Author: J.L. Schafer
Publisher: CRC Press
ISBN: 9781439821862
Format: PDF, Docs
Download Now
The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.

Unifying Political Methodology

Author: Gary King
Publisher: University of Michigan Press
ISBN: 9780472085545
Format: PDF
Download Now
Argues that likelihood theory is a unifying approach to statistical modeling in political science

Statistical Design

Author: George Casella
Publisher: Springer Science & Business Media
ISBN: 0387759646
Format: PDF, ePub, Docs
Download Now
Although statistical design is one of the oldest branches of statistics, its importance is ever increasing, especially in the face of the data flood that often faces statisticians. It is important to recognize the appropriate design, and to understand how to effectively implement it, being aware that the default settings from a computer package can easily provide an incorrect analysis. The goal of this book is to describe the principles that drive good design, paying attention to both the theoretical background and the problems arising from real experimental situations. Designs are motivated through actual experiments, ranging from the timeless agricultural randomized complete block, to microarray experiments, which naturally lead to split plot designs and balanced incomplete blocks. George Casella is Distinguished Professor in the Department of Statistics at the University of Florida. He is active in many aspects of statistics, having contributed to theoretical statistics in the areas of decision theory and statistical confidence, to environmental statistics, and has more recently concentrated efforts in statistical genomics. He also maintains active research interests in the theory and application of Monte Carlo and other computationally intensive methods. He is listed as an ISI "Highly Cited Researcher." In other capacities, Professor Casella has served as Theory and Methods Editor of the Journal of the American Statistical Association, 1996-1999, Executive Editor of Statistical Science, 2001-2004, and Co-Editor of the Journal of the Royal Statistical Society, Series B, 2009-2012. He has served on the Board of Mathematical Sciences of the National Research Council, 1999-2003, and many committees of both the American Statistical Association and the Institute of Mathematical Statistics. Professor Casella has co-authored five textbooks: Variance Components, 1992; Theory of Point Estimation, Second Edition, 1998; Monte Carlo Statistical Methods, Second Edition, 2004; Statistical Inference, Second Edition, 2001, and Statistical Genomics of Complex Traits, 2007.