Mathematical Methods for Physicists

Author: George Brown Arfken
Publisher: Academic Press
ISBN: 0123846544
Format: PDF, Docs
Download Now
Providing coverage of the mathematics necessary for advanced study in physics and engineering, this text focuses on problem-solving skills and offers a vast array of exercises, as well as clearly illustrating and proving mathematical relations.

Mathematical Methods for Physicists

Author: George B. Arfken
Publisher: Academic Press
ISBN: 1483288064
Format: PDF, ePub
Download Now
This new and completely revised Fourth Edition provides thorough coverage of the important mathematics needed for upper-division and graduate study in physics and engineering. Following more than 28 years of successful class-testing, Mathematical Methods for Physicists is considered the standard text on the subject. A new chapter on nonlinear methods and chaos is included, as are revisions of the differential equations and complex variables chapters. The entire book has been made even more accessible, with special attention given to clarity, completeness, and physical motivation. It is an excellent reference apart from its course use. This revised Fourth Edition includes: Modernized terminology Group theoretic methods brought together and expanded in a new chapter An entirely new chapter on nonlinear mathematical physics Significant revisions of the differential equations and complex variables chapters Many new or improved exercises Forty new or improved figures An update of computational techniques for today's contemporary tools, such as microcomputers, Numerical Recipes, and Mathematica(r), among others

Mathematical Methods for Physicists and Engineers

Author: Royal Eugene Collins
Publisher: Courier Corporation
ISBN: 0486150127
Format: PDF, ePub, Docs
Download Now
Practical text focuses on fundamental applied math needed to deal with physics and engineering problems: elementary vector calculus, special functions of mathematical physics, calculus of variations, much more. 1968 edition.

Methods of Mathematical Physics

Author: Harold Jeffreys
Publisher: Cambridge University Press
ISBN: 9780521664028
Format: PDF, Mobi
Download Now
This well-known text and reference contains an account of those parts of mathematics that are most frequently needed in physics. As a working rule, it includes methods which have applications in at least two branches of physics. The authors have aimed at a high standard of rigour and have not accepted the often-quoted opinion that 'any argument is good enough if it is intended to be used by scientists'. At the same time, they have not attempted to achieve greater generality than is required for the physical applications: this often leads to considerable simplification of the mathematics. Particular attention is also paid to the conditions under which theorems hold. Examples of the practical use of the methods developed are given in the text: these are taken from a wide range of physics, including dynamics, hydrodynamics, elasticity, electromagnetism, heat conduction, wave motion and quantum theory. Exercises accompany each chapter.

Mathematical Methods for Physics and Engineering

Author: K. F. Riley
Publisher: Cambridge University Press
ISBN: 1139450999
Format: PDF, Docs
Download Now
The third edition of this highly acclaimed undergraduate textbook is suitable for teaching all the mathematics for an undergraduate course in any of the physical sciences. As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.

Physical Mathematics

Author: Kevin Cahill
Publisher: Cambridge University Press
ISBN: 1107310733
Format: PDF, Docs
Download Now
Unique in its clarity, examples and range, Physical Mathematics explains as simply as possible the mathematics that graduate students and professional physicists need in their courses and research. The author illustrates the mathematics with numerous physical examples drawn from contemporary research. In addition to basic subjects such as linear algebra, Fourier analysis, complex variables, differential equations and Bessel functions, this textbook covers topics such as the singular-value decomposition, Lie algebras, the tensors and forms of general relativity, the central limit theorem and Kolmogorov test of statistics, the Monte Carlo methods of experimental and theoretical physics, the renormalization group of condensed-matter physics and the functional derivatives and Feynman path integrals of quantum field theory.

Mathematical Methods for Physicists

Author: Tai L. Chow
Publisher: Cambridge University Press
ISBN: 9781139427968
Format: PDF, ePub, Docs
Download Now
This text is designed for an intermediate-level, two-semester undergraduate course in mathematical physics. It provides an accessible account of most of the current, important mathematical tools required in physics these days. It is assumed that the reader has an adequate preparation in general physics and calculus. The book bridges the gap between an introductory physics course and more advanced courses in classical mechanics, electricity and magnetism, quantum mechanics, and thermal and statistical physics. The text contains a large number of worked examples to illustrate the mathematical techniques developed and to show their relevance to physics. The book is designed primarily for undergraduate physics majors, but could also be used by students in other subjects, such as engineering, astronomy and mathematics.

Mathematics for Physicists

Author: Huaiyu Wang
Publisher: World Scientific Publishing Company
ISBN: 9813146508
Format: PDF, Docs
Download Now
This book covers the necessary aspects of mathematics for graduate students in physics and engineering. Advanced undergraduate students and researchers who intend to enter the field of theoretical physics can also pick up this book. The first eight chapters include variational method, Hilbert space and operators, ordinary linear differential equations, Bessel functions, Dirac delta function, the Green's function in mathematical physics, norm, integral equations. Beside these traditional contents, the last two chapters introduce some recent achievements of scientific research while presenting their mathematical background. Like the basis of number theory and its application in physics, material science and other scientific fields, the fundamental equations in spaces with arbitrary dimensions, not limited to Euclid space; Pseudo spherical coordinates. Plain terminologies were used to present the concept of metric, as well as new and interesting work on the Klein-Gorden equation and Maxwell equation. Request Inspection Copy

Methods of Mathematical Physics Volume 2

Author: Richard Courant
Publisher: John Wiley & Sons
ISBN: 3527617248
Format: PDF, Kindle
Download Now
Since the first volume of this work came out in Germany in 1937, this book, together with its first volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's final revision of 1961.

Mathematical Physics

Author: Sadri Hassani
Publisher: Springer Science & Business Media
ISBN: 3319011952
Format: PDF, ePub
Download Now
The goal of this book is to expose the reader to the indispensable role that mathematics plays in modern physics. Starting with the notion of vector spaces, the first half of the book develops topics as diverse as algebras, classical orthogonal polynomials, Fourier analysis, complex analysis, differential and integral equations, operator theory, and multi-dimensional Green's functions. The second half of the book introduces groups, manifolds, Lie groups and their representations, Clifford algebras and their representations, and fibre bundles and their applications to differential geometry and gauge theories. This second edition is a substantial revision with a complete rewriting of many chapters and the addition of new ones, including chapters on algebras, representation of Clifford algebras, fibre bundles, and gauge theories. The spirit of the first edition, namely the balance between rigour and physical application, has been maintained, as is the abundance of historical notes and worked out examples that demonstrate the "unreasonable effectiveness of mathematics" in modern physics.