Nuclear Decommissioning

Author: Michele Laraia
Publisher: Elsevier
ISBN: 0857095331
Format: PDF, ePub
Download Now
Once a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any significant health and environmental risks exist. This book critically reviews the nuclear decommissioning processes and technologies applicable to nuclear power plants and other civilian nuclear facilities. Part one focuses on the fundamental planning issues in starting a nuclear decommissioning process, from principles and safety regulations, to financing and project management. Part two covers the execution phase of nuclear decommissioning projects, detailing processes and technologies such as dismantling, decontamination, and radioactive waste management, as well as environmental remediation, site clearance and reuse. Finally, part three details international experience in the decommissioning of nuclear applications, including the main nuclear reactor types and nuclear fuel cycle facilities, as well as small nuclear facilities and legacy nuclear waste sites. Critically reviews nuclear decommissioning processes and technologies applicable to nuclear power plants and other civilian nuclear facilities Discusses the fundamental planning issues in starting a nuclear decommissioning process Considers the execution phase of nuclear decommissioning projects, including dismantling, decontamination, and radioactive waste management, as well as environmental remediation, site clearance and reuse

Advances and Innovations in Nuclear Decommissioning

Author: Michele Laraia
Publisher: Woodhead Publishing
ISBN: 008101239X
Format: PDF, Kindle
Download Now
Advances and Innovations in Nuclear Decommissioning is an essential resource for industry professionals and academics interested in acquiring the most up-to-date information on the current state of nuclear decommissioning. Written and edited by the world’s leading experts, this book considers lessons learned and new innovations in the field. Edited by Dr. Laraia, it is the perfect companion to his 2012 book, Nuclear Decommissioning, which critically reviews the nuclear decommissioning processes and technologies applicable to nuclear power plants and other civilian nuclear facilities. Where the earlier book covers the basics of decommissioning, this new book brings you up-to-date with new areas of interest and approaches, innovative technologies, and lessons learned by both the nuclear and non-nuclear decommissioning sectors. Focuses on new aspects, trends and innovative technologies Includes content on decommissioning after a severe accident, including the use of robotics Brings together information from around the world and considers the lessons learned from the non-nuclear sector as well

Managing Nuclear Projects

Author: Jas Devgun
Publisher: Elsevier
ISBN: 0857097261
Format: PDF, ePub, Mobi
Download Now
In addition to the nuclear power industry, the nuclear field has extensive projects and activities in the areas of research reactors, medical isotope production, decommissioning, and remediation of contaminated sites. Managing nuclear projects focuses on the management aspects of nuclear projects in a wide range of areas with emphasis on process, requirements, and lessons learned. Part one provides a general overview of the nuclear industry including basic principles for managing nuclear projects, nuclear safety culture, management of worker risk, training, and management of complex projects. Part two focuses on managing reactor projects with discussion on a variety of topics including management of research reactor projects, medical radioisotope production, power reactor modifications, power uprates, outage management, and management of nuclear-related R&D. Chapters in part three highlight the areas of radioactive waste and spent fuel management, reactor decommissioning, and remediation of radioactively contaminated sites. Finally, part four explores regulation, guidance and emergency management in the nuclear industry. Chapters discuss quality assurance and auditing programs, licensing procedures for nuclear installations, emergency preparedness, management of nuclear crises, and international nuclear cooperation. With its distinguished editor and contributors, Managing Nuclear Projects is a valuable resource for project managers, plant managers, engineers, regulators, training professionals, consultants, and academics. Examines the basic principles of managing nuclear projects focussing on processes and requirements Discusses the management of reactor projects Explores regulation, guidance and emergency management in the nuclear industry

High Temperature Superconductors HTS for Energy Applications

Author: Ziad Melhem
Publisher: Elsevier
ISBN: 0857095293
Format: PDF, Kindle
Download Now
High temperature superconductors (HTS) offer many advantages through their application in electrical systems, including high efficiency performance and high throughput with low-electrical losses. While cryogenic cooling and precision materials manufacture is required to achieve this goal, cost reductions without significant performance loss are being achieved through the advanced design and development of HTS wires, cables and magnets, along with improvements in manufacturing methods. This book explores the fundamental principles, design and development of HTS materials and their practical applications in energy systems. Part one describes the fundamental science, engineering and development of particular HTS components such as wires and tapes, cables, coils and magnets and discusses the cryogenics and electromagnetic modelling of HTS systems and materials. Part two reviews the types of energy applications that HTS materials are used in, including fault current limiters, power cables and energy storage, as well as their application in rotating machinery for improved electrical efficiencies, and in fusion technologies and accelerator systems where HTS magnets are becoming essential enabling technologies. With its distinguished editor and international team of expert contributors, High temperature superconductors (HTS) for energy applications is an invaluable reference tool for anyone involved or interested in HTS materials and their application in energy systems, including materials scientists and electrical engineers, energy consultants, HTS materials manufacturers and designers, and researchers and academics in this field. Discusses fundamental issues and developments of particular HTS components Comprehensively reviews the design and development of HTS materials and then applications in energy systems Reviews the use of HTS materials and cabling transmissions, fault alignment limiters, energy storage, generators and motors, fusion and accelerator

Waste to Energy Conversion Technology

Author: Naomi B Klinghoffer
Publisher: Elsevier
ISBN: 0857096362
Format: PDF, Docs
Download Now
Increasing global consumerism and population has led to an increase in the levels of waste produced. Waste to energy (WTE) conversion technologies can be employed to convert residual wastes into clean energy, rather than sending these wastes directly to landfill. Waste to energy conversion technology explores the systems, technology and impacts of waste to energy conversion. Part one provides an introduction to WTE conversion and reviews the waste hierarchy and WTE systems options along with the corresponding environmental, regulatory and techno-economic issues facing this technology. Part two goes on to explore further specific aspects of WTE systems, engineering and technology and includes chapters on municipal solid waste (MSW) combustion plants and WTE systems for district heating. Finally, part three highlights pollution control systems for waste to energy technologies. Waste to energy conversion technology is a standard reference book for plant managers, building engineers and consultants requiring an understanding of WTE technologies, and researchers, scientists and academics interested in the field. Reviews the waste hierarchy and waste to energy systems options along with the environmental and social impact of WTE conversion plants Explores the engineering and technology behind WTE systems including considerations of municipal solid waste (MSW) its treatment, combustion and gasification Considers pollution control systems for WTE technologies including the transformation of wast combustion facilities from major polluters to pollution sinks

Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications

Author: Angelo Basile
Publisher: Elsevier
ISBN: 0857093797
Format: PDF, ePub, Docs
Download Now
Membrane materials allow for the selective separation of gas and vapour and for ion transport. Materials research and development continues to drive improvements in the design, manufacture and integration of membrane technologies as critical components in both sustainable energy and clean industry applications. Membrane utilisation offers process simplification and intensification in industry, providing low-cost, and efficient and reliable operation, and contributing towards emissions reductions and energy security. Advanced membrane science and technology for sustainable energy and environmental applications presents a comprehensive review of membrane utilisation and integration within energy and environmental industries. Part one introduces the topic of membrane science and engineering, from the fundamentals of membrane processes and separation to membrane characterization and economic analysis. Part two focuses on membrane utilisation for carbon dioxide (CO2) capture in coal and gas power plants, including pre- and post-combustion and oxygen transport technologies. Part three reviews membranes for the petrochemical industry, with chapters covering hydrocarbon fuel, natural gas and synthesis gas processing, as well as advanced biofuels production. Part four covers membranes for alternative energy applications and energy storage, such as membrane technology for redox and lithium batteries, fuel cells and hydrogen production. Finally, part five discusses membranes utilisation in industrial and environmental applications, including microfiltration, ultrafiltration, and forward osmosis, as well as water, wastewater and nuclear power applications. With its distinguished editors and team of expert contributors, Advanced membrane science and technology for sustainable energy and environmental applications is an essential reference for membrane and materials engineers and manufacturers, as well as researchers and academics interested in this field. Presents a comprehensive review of membrane science and technology, focusing on developments and applications in sustainable energy and clean-industry Discusses the fundamentals of membrane processes and separation and membrane characterization and economic analysis Addresses the key issues of membrane utilisation in coal and gas power plants and the petrochemical industry, the use of membranes for alternative energy applications and membrane utilisation in industrial and environmental applications

Infrastructure and Methodologies for the Justification of Nuclear Power Programmes

Author: Agustin Alonso
Publisher: Elsevier
ISBN: 0857093770
Format: PDF, Kindle
Download Now
The potential development of any nuclear power programme should include a rigorous justification process reviewing the substantial regulatory, economic and technical information necessary for implementation, given the long term commitments involved in any new nuclear power project. Infrastructure and methodologies for the justification of nuclear power programmes reviews the fundamental issues and approaches to nuclear power justification in countries considering nuclear new build or redevelopment. Part one covers the infrastructure requirements for any new nuclear power programme, with chapters detailing the role and responsibilities of government, regulatory bodies and nuclear operator and the need for human resources and technical capability at the national level. Part two focuses on issues relevant to the justification process, including nuclear safety, radiation protection and emergency planning. Current designs and advanced reactors and radioactive waste management are also considered, along with the economic, social and environmental impacts of nuclear power development. Part three reviews the development of nuclear power programme, from nuclear power plant site selection and licensing, through construction and operation, and on to decommissioning. Finally, a series of valuable appendices detail the UK experience of justification, nuclear safety culture and training, and the multinational design evaluation programme (MDEP). With its distinguished editor and expert team of contributors, Infrastructure and methodologies for the justification of nuclear power programmes is an essential reference for international and national stakeholders in this field, particularly governmental, non-governmental and regulatory bodies, nuclear power operators and consultants. Offers a comprehensive analysis of the infrastructure and methodologies required to justify the creation of nuclear power programmes in any country Provides coverage of the main issues and potential benefit linked to nuclear power Reviews the implementation of a nuclear power programme with particular reference to the requirements and methods involved in construction

Radioactive Waste Management and Contaminated Site Clean Up

Author: William E Lee
Publisher: Elsevier
ISBN: 085709744X
Format: PDF, Mobi
Download Now
Radioactive waste management and contaminated site clean-up reviews radioactive waste management processes, technologies, and international experiences. Part one explores the fundamentals of radioactive waste including sources, characterisation, and processing strategies. International safety standards, risk assessment of radioactive wastes and remediation of contaminated sites and irradiated nuclear fuel management are also reviewed. Part two highlights the current international situation across Africa, Asia, Europe, and North America. The experience in Japan, with a specific chapter on Fukushima, is also covered. Finally, part three explores the clean-up of sites contaminated by weapons programmes including the USA and former USSR. Radioactive waste management and contaminated site clean-up is a comprehensive resource for professionals, researchers, scientists and academics in radioactive waste management, governmental and other regulatory bodies and the nuclear power industry. Explores the fundamentals of radioactive waste including sources, characterisation, and processing strategies Reviews international safety standards, risk assessment of radioactive wastes and remediation of contaminated sites and irradiated nuclear fuel management Highlights the current international situation across Africa, Asia, Europe, and North America specifically including a chapter on the experience in Fukushima, Japan

Electrical Drives for Direct Drive Renewable Energy Systems

Author: Markus Mueller
Publisher: Elsevier
ISBN: 0857097490
Format: PDF, Docs
Download Now
Wind turbine gearboxes present major reliability issues, leading to great interest in the current development of gearless direct-drive wind energy systems. Offering high reliability, high efficiency and low maintenance, developments in these direct-drive systems point the way to the next generation of wind power, and Electrical drives for direct drive renewable energy systems is an authoritative guide to their design, development and operation. Part one outlines electrical drive technology, beginning with an overview of electrical generators for direct drive systems. Principles of electrical design for permanent magnet generators are discussed, followed by electrical, thermal and structural generator design and systems integration. A review of power electronic converter technology and power electronic converter systems for direct drive renewable energy applications is then conducted. Part two then focuses on wind and marine applications, beginning with a commercial overview of wind turbine drive systems and an introduction to direct drive wave energy conversion systems. The commercial application of these technologies is investigated via case studies on the permanent magnet direct drive generator in the Zephyros wind turbine, and the Archimedes Wave Swing (AWS) direct drive wave energy pilot plant. Finally, the book concludes by exploring the application of high-temperature superconducting machines to direct drive renewable energy systems. With its distinguished editors and international team of expert contributors, Electrical drives for direct drive renewable energy systems provides a comprehensive review of key technologies for anyone involved with or interested in the design, construction, operation, development and optimisation of direct drive wind and marine energy systems. An authorative guide to the design, development and operation of gearless direct drives Discusses the principles of electrical design for permanent magnet generators and electrical, thermal and structural generator design and systems integration Investigates the commercial applications of wind turbine drive systems

Functional Materials for Sustainable Energy Applications

Author: J A Kilner
Publisher: Elsevier
ISBN: 0857096370
Format: PDF, ePub
Download Now
Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production. Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials. With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. An essential guide to the development and application of functional materials in sustainable energy production Reviews functional materials for solar power Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage