Plant Genes Genomes and Genetics

Author: Erich Grotewold
Publisher: John Wiley & Sons
ISBN: 1119998875
Format: PDF
Download Now
Plant Genes, Genomes and Genetics provides a dedicated, plant focused textbook for graduates and advanced undergraduates. The book considers the control of plant gene expression in the broad sense from the mechanism of transcription to the generation of a protein and will provide a general idea of how these processes occur in plants, specifically highlighting cases when plants and other organisms are different. Plant gene expression continues to be taught from general textbooks that focus primarily on yeast and animals for eukaryotes, yet rarely mention plants so this book aims to fill that gap in teaching material. This book will be the first book in the Wiley-Blackwell/ASPB Plant Biology Book Series.

The Handbook of Plant Genome Mapping

Author: Khalid Meksem
Publisher: John Wiley & Sons
ISBN: 352760443X
Format: PDF, Kindle
Download Now
While the complete sequencing of the genomes of model organisms such as a multitude of bacteria and archaea, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the mouse and human genomes have received much public attention, the deciphering of plant genomeswas greatly lagging behind. Up to now, only two plant genomes, one of the model plant Arabidopsis thaliana and one of the crop species rice (Oryza sativa) have been sequenced, though a series of other crop genome sequencing projects are underway. Notwithstanding this public bias towards genomics of animals and humans, it is nevertheless of great importance for basic and applied sciences and industries in such diverse fields as agriculture, breeding in particular, evolutionary genetics, biotechnology, and food science to know the composition of crop plant genomes in detail. It is equally crucial for a deeper understanding of the molecular basis of biodiversity and synteny. The Handbook of Genome Mapping: Genetic and Physical Mapping is the first book on the market to cover these hot topics in considerable detail, and is set apart by its combination of genetic and physical mapping. Throughout, each chapter begins with an easy-to-read introduction, also making the book the first reference designed for non-specialists and newcomers, too. In addition to being an outstanding bench work reference, the book is an excellent textbook for learning and teaching genomics, in particular for courses on genome mapping. It also serves as an up-to-date guide for seasoned researchers involved in the genetic and physical mapping of genomes, especially plant genomes.

From Genes to Genomes

Author: Jeremy W. Dale
Publisher: John Wiley & Sons
ISBN: 1119954274
Format: PDF, Docs
Download Now
The latest edition of this highly successful textbook introduces the key techniques and concepts involved in cloning genes and in studying their expression and variation. The new edition features: Increased coverage of whole-genome sequencing technologies and enhanced treatment of bioinformatics. Clear, two-colour diagrams throughout. A dedicated website including all figures. Noted for its outstanding balance between clarity of coverage and level of detail, this book provides an excellent introduction to the fast moving world of molecular genetics.

Genetic Analysis

Author: Philip Meneely
Publisher: Oxford University Press, USA
ISBN: 0199651817
Format: PDF, ePub, Docs
Download Now
How do we know what role a particular gene has? How do some genes control the expression of others? How do genes interact to form gene networks? With its unique integration of genetics and molecular biology, Genetic Analysis probes fascinating questions such as these, detailing how our understanding of key genetic phenomena can be used to understand biological systems. Opening with a brief overview of key genetic principles, model organisms, and epigenetics, the book goes on to explorethe use of gene mutations and the analysis of gene expression and activity. A discussion of the genetic structure of natural populations follows, before the interaction of genes during suppression and epistasis, how we study gene networks, and personalized genomics are considered. Drawing on the latest experimental tools, including microarrays, RNAi screens, and bioinformatics approaches, Genetic Analysis provides a state-of-the-art review of the field, but in a truly student-friendly manner. It uses extended case studies and text boxes to augment the narrative, taking the reader right to the forefront of contemporary research, without losing clarity of explanation and insight. We are in an age where, despite knowing so much about biological systems, we are just beginning to realise how much more there is still to understand. Genetic Analysis is the ideal guide to how we can use the awesome power of molecular genetics to further our understanding. Online Resource Centre: The Online Resource Centre to accompany Genetic Analysis features the following resources for teachers and students: For students: * Topical updates - key updates on topics or tools presented in the book, to keep you up-to-date with the latest developments in the field. * Additional case studies and text boxes to complement and add to those found in the book. * Practice problems, to test the reader's knowledge of the concepts presented, and help to master them. For registered adopters ofthe book: * Figures from the book in electronic format, ready to download. * Journal clubs - suggested papers and discussion questions linked to topics covered in the book.

Flow Cytometry with Plant Cells

Author: Jaroslav Dolezel
Publisher: John Wiley & Sons
ISBN: 3527314873
Format: PDF, Kindle
Download Now
Targeted at beginners as well as experienced users, this handy reference explains the benefits and uses of flow cytometery in the study of plants and their genomes. Following a brief introduction that highlights general considerations when analyzing plant cells by flow cytometric methods, the book goes on to discuss examples of application in plant genetics, genomic analysis, cell cycle analysis, marine organism analysis and breeding studies. With its list of general reading and a glossary of terms, this first reference on FCM in plants fills a real gap by providing first-hand practical hints for the growing community of plant geneticists.

Plant Genomics and Proteomics

Author: Christopher A. Cullis
Publisher: John Wiley & Sons
ISBN: 0471488585
Format: PDF, Mobi
Download Now
Plant research has stood at the forefront of the genomics revolution. One of the first genome projects, the sequencing of the commonly used model organism Arabidopsis, has already yielded important results for the study of a broad array of crops such as corn and soybeans. With crop and food bioengineering only in its infancy, the need to understand the fundamental genetic mechanisms of plants will only become more pressing. A comprehensive guide to this fascinating area of genomics, Plant Genomics and Proteomics presents an integrated, broadly accessible treatment of the complex relationship between the genome, transcriptome, and proteome of plants. This clearly written text introduces the reader to the range of molecular techniques applicable to investigating the unique facets of plant growth, development, and response to the environment. Coverage includes: Functional and structural genomics addressed within the context of current techniques and challenges to come How to utilize DNA and protein sequence data Practical considerations for choosing and employing the most commonly available computer applications A review of applications for biotechnology, including genetic modification and defense against pathogens Bioinformatics tools and Web resources Numerous examples from the latest research throughout Assuming no specialized knowledge of plant biology on the part of its reader, Plant Genomics and Proteomics provides an invaluable resource for students and researchers in biotechnology, plant biology, genomics, and bioinformatics.

Applied Plant Genomics and Biotechnology

Author: Palmiro Poltronieri
Publisher: Woodhead Publishing
ISBN: 0081000715
Format: PDF, ePub
Download Now
Applied plant genomics and biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, investigating epigenetic modifications and epigenetic memory through analysis of DNA methylation states, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics, and plants modified to produce high-value pharmaceutical proteins. The book provides an overview of research advances in application of RNA silencing and RNA interference, through Virus-based transient gene expression systems, Virus induced gene complementation (VIGC), Virus induced gene silencing (Sir VIGS, Mr VIGS) Virus-based microRNA silencing (VbMS) and Virus-based RNA mobility assays (VRMA); RNA based vaccines and expression of virus proteins or RNA, and virus-like particles in plants, the potential of virus vaccines and therapeutics, and exploring plants as factories for useful products and pharmaceuticals are topics wholly deepened. The book reviews and discuss Plant Functional Genomic studies discussing the technologies supporting the genetic improvement of plants and the production of plant varieties more resistant to biotic and abiotic stresses. Several important crops are analysed providing a glimpse on the most up-to-date methods and topics of investigation. The book presents a review on current state of GMO, the cisgenesis-derived plants and novel plant products devoid of transgene elements, discuss their regulation and the production of desired traits such as resistance to viruses and disease also in fruit trees and wood trees with long vegetative periods. Several chapters cover aspects of plant physiology related to plant improvement: cytokinin metabolism and hormone signaling pathways are discussed in barley; PARP-domain proteins involved in Stress-Induced Morphogenetic Response, regulation of NAD signaling and ROS dependent synthesis of anthocyanins. Apple allergen isoforms and the various content in different varieties are discussed and approaches to reduce their presence. Euphorbiaceae, castor bean, cassava and Jathropa are discussed at genomic structure, their diseases and viruses, and methods of transformation. Rice genomics and agricultural traits are discussed, and biotechnology for engineering and improve rice varieties. Mango topics are presented with an overview of molecular methods for variety differentiation, and aspects of fruit improvement by traditional and biotechnology methods. Oilseed rape is presented, discussing the genetic diversity, quality traits, genetic maps, genomic selection and comparative genomics for improvement of varieties. Tomato studies are presented, with an overview on the knowledge of the regulatory networks involved in flowering, methods applied to study the tomato genome-wide DNA methylation, its regulation by small RNAs, microRNA-dependent control of transcription factors expression, the development and ripening processes in tomato, genomic studies and fruit modelling to establish fleshy fruit traits of interest; the gene reprogramming during fruit ripening, and the ethylene dependent and independent DNA methylation changes. provides an overview on the ongoing projects and activities in the field of applied biotechnology includes examples of different crops and applications to be exploited reviews and discusses Plant Functional Genomic studies and the future developments in the field explores the new technologies supporting the genetic improvement of plants

From Plant Genomics to Plant Biotechnology

Author: Palmiro Poltronieri
Publisher: Elsevier
ISBN: 1908818476
Format: PDF, ePub, Docs
Download Now
With the appearance of methods for the sequencing of genomes and less expensive next generation sequencing methods, we face rapid advancements of the -omics technologies and plant biology studies: reverse and forward genetics, functional genomics, transcriptomics, proteomics, metabolomics, the movement at distance of effectors and structural biology. From plant genomics to plant biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, understanding the epigenetic control and epigenetic memory, the roles of non-coding RNAs, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics and plants modified to specific aims. In the forthcoming years these advancements will support the production of plant varieties better suited to resist biotic and abiotic stresses, for food and non-food applications. This book covers these issues, showing how such technologies are influencing the plant field in sectors such as the selection of plant varieties and plant breeding, selection of optimum agronomic traits, stress-resistant varieties, improvement of plant fitness, improving crop yield, and non-food applications in the knowledge based bio-economy. Discusses a broad range of applications: the examples originate from a variety of sectors (including in field studies, breeding, RNA regulation, pharmaceuticals and biotech) and a variety of scientific areas (such as bioinformatics, -omics sciences, epigenetics, and the agro-industry) Provides a unique perspective on work normally performed 'behind closed doors'. As such, it presents an opportunity for those within the field to learn from each other, and for those on the 'outside' to see how different groups have approached key problems Highlights the criteria used to compare and assess different approaches to solving problems. Shows the thinking process, practical limitations and any other considerations, aiding in the understanding of a deeper approach

Genomes of Plants and Animals

Author: J. Perry Gustafson
Publisher: Springer Science & Business Media
ISBN: 1489902805
Format: PDF, Kindle
Download Now
This volume brings together the disciplines of plant and animal genome research, and serves as an opportunity for scientists from both fields to compare results, problems and prospects.

Genetic and Genomic Resources of Grain Legume Improvement

Author: Mohar Singh
Publisher: Newnes
ISBN: 0123984947
Format: PDF, Docs
Download Now
Grain legumes, including common-bean, chickpea, pigeonpea, pea, cowpea, lentil and others, form important constituents of global diets, both vegetarian and non-vegetarian. Despite this significant role, global production has increased only marginally in the past 50 years. The slow production growth, along with a rising human population and improved buying capacity has substantially reduced the per capita availability of food legumes. Changes in environmental climate have also had significant impact on production, creating a need to identify stable donors among genetic resources for environmentally robust genes and designing crops resilient to climate change. Genetic and Genomic Resources of Grain Legume Improvement is the first book to bring together the latest resources in plant genetics and genomics to facilitate the identification of specific germplasm, trait mapping and allele mining to more effectively develop biotic and abiotic-stress-resistant grains. This book will be an invaluable resource for researchers, crop biologists and students working with crop development. Explores origin, distribution and diversity of grain legumes Presents information on germplasm collection, evaluation and maintenance Offers insight into pre-breeding/germplasm enhancement efforts Integrates genomic and genetic resources in crop improvement Internationally contributed work