Solution Techniques for Elementary Partial Differential Equations

Author: Christian Constanda
Publisher: CRC Press
ISBN: 9781584882572
Format: PDF, Mobi
Download Now
Of the many available texts on partial differential equations (PDEs), most are too detailed and voluminous, making them daunting to many students. In sharp contrast, Solution Techniques for Elementary Partial Differential Equations is a no-frills treatment that explains completely but succinctly some of the most fundamental solution methods for PDEs. After a brief review of elementary ODE techniques and discussions on Fourier series and Sturm-Liouville problems, the author introduces the heat, Laplace, and wave equations as mathematical models of physical phenomena. He then presents a number of solution techniques and applies them to specific initial/boundary value problems for these models. Discussion of the general second order linear equation in two independent variables follows, and finally, the method of characteristics and perturbation methods are presented. Most students seem to like concise, easily digestible explanations and worked examples that let them see the techniques in action. This text offers them both. Ideally suited for independent study and classroom tested with great success, it offers a direct, streamlined route to competence in PDE solution techniques.

Solution Techniques for Elementary Partial Differential Equations Second Edition

Author: Christian Constanda
Publisher: CRC Press
ISBN: 1439811407
Format: PDF, Mobi
Download Now
Incorporating a number of enhancements, Solution Techniques for Elementary Partial Differential Equations, Second Edition presents some of the most important and widely used methods for solving partial differential equations (PDEs). The techniques covered include separation of variables, method of characteristics, eigenfunction expansion, Fourier and Laplace transformations, Green’s functions, perturbation methods, and asymptotic analysis. New to the Second Edition New sections on Cauchy–Euler equations, Bessel functions, Legendre polynomials, and spherical harmonics A new chapter on complex variable methods and systems of PDEs Additional mathematical models based on PDEs Examples that show how the methods of separation of variables and eigenfunction expansion work for equations other than heat, wave, and Laplace Supplementary applications of Fourier transformations The application of the method of characteristics to more general hyperbolic equations Expanded tables of Fourier and Laplace transforms in the appendix Many more examples and nearly four times as many exercises This edition continues to provide a streamlined, direct approach to developing students’ competence in solving PDEs. It offers concise, easily understood explanations and worked examples that enable students to see the techniques in action. Available for qualifying instructors, the accompanying solutions manual includes full solutions to the exercises. Instructors can obtain a set of template questions for test/exam papers as well as computer-linked projector files directly from the author.

An Introduction to Partial Differential Equations with MATLAB Second Edition

Author: Matthew P. Coleman
Publisher: CRC Press
ISBN: 1439898472
Format: PDF, Docs
Download Now
An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

Handbook of Mathematics for Engineers and Scientists

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 9781584885023
Format: PDF, ePub, Docs
Download Now
The Handbook of Mathematics for Engineers and Scientists covers the main fields of mathematics and focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. To accommodate different mathematical backgrounds, the preeminent authors outline the material in a simplified, schematic manner, avoiding special terminology wherever possible. Organized in ascending order of complexity, the material is divided into two parts. The first part is a coherent survey of the most important definitions, formulas, equations, methods, and theorems. It covers arithmetic, elementary and analytic geometry, algebra, differential and integral calculus, special functions, calculus of variations, and probability theory. Numerous specific examples clarify the methods for solving problems and equations. The second part provides many in-depth mathematical tables, including those of exact solutions of various types of equations. This concise, comprehensive compendium of mathematical definitions, formulas, and theorems provides the foundation for exploring scientific and technological phenomena.

Solution Techniques for Elementary Partial Differential Equations Third Edition

Author: Christian Constanda
Publisher: CRC Press
ISBN: 9781498704953
Format: PDF
Download Now
Solution Techniques for Elementary Partial Differential Equations, Third Editionremains a top choice for a standard, undergraduate-level course on partial differential equations (PDEs). Making the text even more user-friendly, this third edition covers important and widely used methods for solving PDEs. New to the Third Edition New sections on the series expansion of more general functions, other problems of general second-order linear equations, vibrating string with other types of boundary conditions, and equilibrium temperature in an infinite strip Reorganized sections that make it easier for students and professors to navigate the contents Rearranged exercises that are now at the end of each section/subsection instead of at the end of the chapter New and improved exercises and worked examples A brief Mathematica®program for nearly all of the worked examples, showing students how to verify results by computer This bestselling, highly praised textbook uses a streamlined, direct approach to develop students' competence in solving PDEs. It offers concise, easily understood explanations and worked examples that allow students to see the techniques in action.

Elementary Differential Equations

Author: Kenneth Kuttler
Publisher: CRC Press
ISBN: 1351727265
Format: PDF, ePub, Docs
Download Now
Elementary Differential Equations presents the standard material in a first course on di?erential equations, including all standard methods which have been a part of the subject since the time of Newton and the Bernoulli brothers. The emphasis in this book is on theory and methods and di?erential equations as a part of analysis. Di?erential equations is worth studying, rather than merely some recipes to be used in physical science. The text gives substantial emphasis to methods which are generally presented ?rst with theoretical considerations following. Essentially all proofs of the theorems used are included, making the book more useful as a reference. The book mentions the main computer algebra systems, yet the emphasis is placed on MATLAB and numerical methods which include graphing the solutions and obtaining tables of values. Featured applications are easily understood. Complete explanations of the mathematics and emphasis on methods for ?nding solutions are included.

Numerical Solution of Partial Differential Equations

Author: K. W. Morton
Publisher: Cambridge University Press
ISBN: 1139443208
Format: PDF, Mobi
Download Now
This is the 2005 second edition of a highly successful and well-respected textbook on the numerical techniques used to solve partial differential equations arising from mathematical models in science, engineering and other fields. The authors maintain an emphasis on finite difference methods for simple but representative examples of parabolic, hyperbolic and elliptic equations from the first edition. However this is augmented by new sections on finite volume methods, modified equation analysis, symplectic integration schemes, convection-diffusion problems, multigrid, and conjugate gradient methods; and several sections, including that on the energy method of analysis, have been extensively rewritten to reflect modern developments. Already an excellent choice for students and teachers in mathematics, engineering and computer science departments, the revised text includes more latest theoretical and industrial developments.

An Introduction to Partial Differential Equations with MATLAB Second Edition

Author: Matthew P. Coleman
Publisher: CRC Press
ISBN: 1439898472
Format: PDF, Kindle
Download Now
An Introduction to Partial Differential Equations with MATLAB®, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat, the propagation of sound waves, the spread of algae along the ocean’s surface, the fluctuation in the price of a stock option, and the quantum mechanical behavior of a hydrogen atom. Suitable for a two-semester introduction to PDEs and Fourier series for mathematics, physics, and engineering students, the text teaches the equations based on method of solution. It provides both physical and mathematical motivation as much as possible. The author treats problems in one spatial dimension before dealing with those in higher dimensions. He covers PDEs on bounded domains and then on unbounded domains, introducing students to Fourier series early on in the text. Each chapter’s prelude explains what and why material is to be covered and considers the material in a historical setting. The text also contains many exercises, including standard ones and graphical problems using MATLAB. While the book can be used without MATLAB, instructors and students are encouraged to take advantage of MATLAB’s excellent graphics capabilities. The MATLAB code used to generate the tables and figures is available in an appendix and on the author’s website.

Handbook of Linear Partial Differential Equations for Engineers and Scientists Second Edition

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1466581492
Format: PDF, ePub, Docs
Download Now
Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.

Handbook of Exact Solutions for Ordinary Differential Equations

Author: Valentin F. Zaitsev
Publisher: CRC Press
ISBN: 1420035339
Format: PDF, Mobi
Download Now
Exact solutions of differential equations continue to play an important role in the understanding of many phenomena and processes throughout the natural sciences in that they can verify the correctness of or estimate errors in solutions reached by numerical, asymptotic, and approximate analytical methods. The new edition of this bestselling handbook now contains the exact solutions to more than 6200 ordinary differential equations. The authors have made significant enhancements to this edition, including: An introductory chapter that describes exact, asymptotic, and approximate analytical methods for solving ordinary differential equations The addition of solutions to more than 1200 nonlinear equations An improved format that allows for an expanded table of contents that makes locating equations of interest more quickly and easily Expansion of the supplement on special functions This handbook's focus on equations encountered in applications and on equations that appear simple but prove particularly difficult to integrate make it an indispensable addition to the arsenals of mathematicians, scientists, and engineers alike.