The Standard Model of Quantum Physics in Clifford Algebra

Author: Claude Daviau
Publisher: World Scientific
ISBN: 9814719889
Format: PDF
Download Now
We extend to gravitation our previous study of a quantum wave for all particles and antiparticles of each generation (electron + neutrino + u and d quarks for instance). This wave equation is form invariant under Cl3*, then relativistic invariant. It is gauge invariant under the gauge group of the standard model, with a mass term: this was impossible before, and the consequence was an impossibility to link gauge interactions and gravitation. Contents:ForewordIntroductionClifford AlgebrasDirac EquationThe Homogeneous Nonlinear Wave EquationInvariance of Electromagnetic LawsMiscellaneousElectro-Weak Interactions: The Lepton CaseElectro-Weak and Strong InteractionsMagnetic MonopolesInertia and GravitationConclusionAppendix A: Calculations in Clifford AlgebrasAppendix B: Electron+Neutrino+QuarksAppendix C: The Hydrogen AtomBibliographyIndex Readership: Graduate students and professionals in particle physics or mathematical physics. Key Features:Presents an argument that gravitation is compatible with quantum physicsThe gauge group of the standard model is obtained from the geometry of space-timeMagnetic monopoles are joined to this new frameKeywords:Natural Logic;Logical Expressive Power (Of Natural Language);Boolean Structure;Generalized Quantifiers and Anaphora;Formal Semantics;Entailment Paradigms in Natural Language

Symmetry and the Standard Model

Author: Matthew Robinson
Publisher: Springer Science & Business Media
ISBN: 1441982671
Format: PDF
Download Now
While theoretical particle physics is an extraordinarily fascinating field, the incredibly fast pace at which it moves along, combined with the huge amount of background information necessary to perform cutting edge research, poses a formidable challenge for graduate students. This book represents the first in a series designed to assist students in the process of transitioning from coursework to research in particle physics. Rather than reading literally dozens of physics and mathematics texts, trying to assimilate the countless ideas, translate notations and perspectives, and see how it all fits together to get a holistic understanding, this series provides a detailed overview of the major mathematical and physical ideas in theoretical particle physics. Ultimately the ideas will be presented in a unified, consistent, holistic picture, where each topic is built firmly on what has come before, and all topics are related in a clear and intuitive way. This introductory text on quantum field theory and particle physics provides both a self-contained and complete introduction to not only the necessary physical ideas, but also a complete introduction to the necessary mathematical tools. Assuming minimal knowledge of undergraduate physics and mathematics, this book lays both the mathematical and physical groundwork with clear, intuitive explanations and plenty of examples. The book then continues with an exposition of the Standard Model of Particle Physics, the theory that currently seems to explain the universe apart from gravity. Furthermore, this book was written as a primer for the more advanced mathematical and physical ideas to come later in this series.

Group Theory for the Standard Model of Particle Physics and Beyond

Author: Ken J. Barnes
Publisher: Taylor & Francis
ISBN: 1439895201
Format: PDF, ePub, Mobi
Download Now
Based on the author’s well-established courses, Group Theory for the Standard Model of Particle Physics and Beyond explores the use of symmetries through descriptions of the techniques of Lie groups and Lie algebras. The text develops the models, theoretical framework, and mathematical tools to understand these symmetries. After linking symmetries with conservation laws, the book works through the mathematics of angular momentum and extends operators and functions of classical mechanics to quantum mechanics. It then covers the mathematical framework for special relativity and the internal symmetries of the standard model of elementary particle physics. In the chapter on Noether’s theorem, the author explains how Lagrangian formalism provides a natural framework for the quantum mechanical interpretation of symmetry principles. He then examines electromagnetic, weak, and strong interactions; spontaneous symmetry breaking; the elusive Higgs boson; and supersymmetry. He also introduces new techniques based on extending space–time into dimensions described by anticommuting coordinates. Designed for graduate and advanced undergraduate students in physics, this text provides succinct yet complete coverage of the group theory of the symmetries of the standard model of elementary particle physics. It will help students understand current knowledge about the standard model as well as the physics that potentially lies beyond the standard model.

Quantum Theory Groups and Representations

Author: Peter Woit
Publisher: Springer
ISBN: 3319646125
Format: PDF, Docs
Download Now
This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Geometric Algebra for Physicists

Author: Chris Doran
Publisher: Cambridge University Press
ISBN: 1139643142
Format: PDF, ePub, Mobi
Download Now
Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.

Clifford Geometric Algebras

Author: William Baylis
Publisher: Springer Science & Business Media
ISBN: 1461241049
Format: PDF, ePub, Docs
Download Now
This volume is an outgrowth of the 1995 Summer School on Theoretical Physics of the Canadian Association of Physicists (CAP), held in Banff, Alberta, in the Canadian Rockies, from July 30 to August 12,1995. The chapters, based on lectures given at the School, are designed to be tutorial in nature, and many include exercises to assist the learning process. Most lecturers gave three or four fifty-minute lectures aimed at relative novices in the field. More emphasis is therefore placed on pedagogy and establishing comprehension than on erudition and superior scholarship. Of course, new and exciting results are presented in applications of Clifford algebras, but in a coherent and user-friendly way to the nonspecialist. The subject area of the volume is Clifford algebra and its applications. Through the geometric language of the Clifford-algebra approach, many concepts in physics are clarified, united, and extended in new and sometimes surprising directions. In particular, the approach eliminates the formal gaps that traditionally separate clas sical, quantum, and relativistic physics. It thereby makes the study of physics more efficient and the research more penetrating, and it suggests resolutions to a major physics problem of the twentieth century, namely how to unite quantum theory and gravity. The term "geometric algebra" was used by Clifford himself, and David Hestenes has suggested its use in order to emphasize its wide applicability, and b& cause the developments by Clifford were themselves based heavily on previous work by Grassmann, Hamilton, Rodrigues, Gauss, and others.

An Introduction to Clifford Algebras and Spinors

Author: Vaz Jr.
Publisher: Oxford University Press
ISBN: 0191085782
Format: PDF, Mobi
Download Now
This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and is accessible to both students and researchers. It emphasizes the formal character and the deep algebraic and geometric completeness, and merges them with the physical applications. The style is clear and precise, but not pedantic. The sole pre-requisites is a course in Linear Algebra which most students of Physics, Mathematics or Engineering will have covered as part of their undergraduate studies.

Clifford Algebras

Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 1461220440
Format: PDF, ePub, Mobi
Download Now
The invited papers in this volume provide a detailed examination of Clifford algebras and their significance to analysis, geometry, mathematical structures, physics, and applications in engineering. While the papers collected in this volume require that the reader possess a solid knowledge of appropriate background material, they lead to the most current research topics. With its wide range of topics, well-established contributors, and excellent references and index, this book will appeal to graduate students and researchers.

Geometric Algebra and Applications to Physics

Author: Venzo de Sabbata
Publisher: CRC Press
ISBN: 9781584887737
Format: PDF, Kindle
Download Now
Bringing geometric algebra to the mainstream of physics pedagogy, Geometric Algebra and Applications to Physics not only presents geometric algebra as a discipline within mathematical physics, but the book also shows how geometric algebra can be applied to numerous fundamental problems in physics, especially in experimental situations. This reference begins with several chapters that present the mathematical fundamentals of geometric algebra. It introduces the essential features of postulates and their underlying framework; bivectors, multivectors, and their operators; spinor and Lorentz rotations; and Clifford algebra. The book also extends some of these topics into three dimensions. Subsequent chapters apply these fundamentals to various common physical scenarios. The authors show how Maxwell's equations can be expressed and manipulated via space-time algebra and how geometric algebra reveals electromagnetic waves' states of polarization. In addition, they connect geometric algebra and quantum theory, discussing the Dirac equation, wave functions, and fiber bundles. The final chapter focuses on the application of geometric algebra to problems of the quantization of gravity. By covering the powerful methodology of applying geometric algebra to all branches of physics, this book provides a pioneering text for undergraduate and graduate students as well as a useful reference for researchers in the field.

Tensors and the Clifford Algebra

Author: Alphonse Charlier
Publisher: CRC Press
ISBN: 9780824786663
Format: PDF, Mobi
Download Now
This practical reference and text presents the applications of tensors, Lie groups and algebra to Maxwell, Klein-Gordon and Dirac equations, making elementary theoretical physics comprehensible and high-level theoretical physics accessible.;Providing the fundamental mathematics necessary to understand the applications, Tensors and the Clifford Algebra offers lucid discussions of covariant tensor calculus; examines subjects from a variety of perspectives; supplies highly detailed developments of all calculations; employs the language of physics in its explanations; and illustrates the use of Clifford algebra and tensor calculus in studying bosons and fermions.;With over 2800 display equations and 14 appendixes, this book should be a useful reference for mathematical physicists and applied mathematicians, and an important text for upper-level undergraduate and graduate students in quantum mechanics, relativity, electromagnetism, theoretical physics, elasticity and field theory courses.