Thermal Energy at the Nanoscale

Author: Timothy S Fisher
Publisher: World Scientific Publishing Company
ISBN: 9814449806
Format: PDF, Mobi
Download Now
These lecture notes provide a detailed treatment of the thermal energy storage and transport by conduction in natural and fabricated structures. Thermal energy in two carriers, i.e. phonons and electrons — are explored from first principles. For solid-state transport, a common Landauer framework is used for heat flow. Issues including the quantum of thermal conductance, ballistic interface resistance, and carrier scattering are elucidated. Bulk material properties, such as thermal and electrical conductivity, are derived from particle transport theories, and the effects of spatial confinement on these properties are established.

Lessons from Nanoelectronics

Author: Supriyo Datta
Publisher: World Scientific Publishing Company
ISBN: 9814483907
Format: PDF, ePub, Mobi
Download Now
Everyone is familiar with the amazing performance of a modern smartphone, powered by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms in length. These lecture notes are about a less appreciated by-product of the microelectronics revolution, namely the deeper understanding of current flow, and device operation that it has enabled, which forms the basis for a new approach to transport problems. The book assumes very little background beyond linear algebra and differential equations, and is intended to be accessible to anyone in any branch of science or engineering. Readers are encouraged to visit the website http://nanohub.org/groups/lnebook to access revisions, corrections, video lectures, tutorials, quizzes and also to join a Q&A forum based on questions from readers.

Near Equilibrium Transport

Author: Mark Lundstrom
Publisher: World Scientific Publishing Company
ISBN: 9814452246
Format: PDF, Docs
Download Now
These lectures are designed to introduce students to the fundamentals of carrier transport in nano-devices using a novel, “bottom up approach” that agrees with traditional methods when devices are large, but which also works for nano-devices. The goal is to help students learn how to think about carrier transport at the nanoscale and also how the bottom up approach provides a new perspective to traditional concepts like mobility and drift-diffusion equations. The lectures are designed for engineers and scientists and others who need a working knowledge of near-equilibrium (“low-field” or “linear”) transport. Applications of the theory and measurement considerations are also addressed. The lectures serve as a starting point to an extensive set of instructional materials available online.

Nano Microscale Heat Transfer

Author: Zhuomin Zhang
Publisher: McGraw Hill Professional
ISBN: 0071509739
Format: PDF, ePub, Mobi
Download Now
A THOROUGH EXPLANATION OF THE METHODOLOGIES USED FOR SOLVING HEAT TRANSFER PROBLEMS IN MICRO- AND NANOSYSTEMS. Written by one of the field's pioneers, this highly practical, focused resource integrates the existing body of traditional knowledge with the most recent breakthroughs to offer the reader a solid foundation as well as working technical skills. THE INFORMATION NEEDED TO ACCOUNT FOR THE SIZE EFFECT WHEN DESIGNING AND ANALYZING SYSTEMS AT THE NANOMETER SCALE, WITH COVERAGE OF Statistical Thermodynamics, Quantum Mechanics, Thermal Properties of Molecules, Kinetic Theory, and Micro/Nanofluidics Thermal Transport in Solid Micro/Nanostructures, Electron and Phonon Scattering, Size Effects, Quantum Conductance, Electronic Band Theory, Tunneling, Nonequilibrium Heat Conduction, and Analysis of Solid State Devices Such As Thermoelectric Refrigeration and Optoelectronics Nanoscale Thermal Radiation and Radiative Properties of Nanomaterials, Radiation Temperature and Entropy, Surface Electromagnetic Waves, and Near-Field Radiation for Energy Conversion Devices IN THE NANOWORLD WHERE THE OLD AXIOMS OF THERMAL ANALYSIS MAY NOT APPLY, NANO/MICROSCALE HEAT TRANSFER IS AN ESSENTIAL RESEARCH AND LEARNING SOURCE. Inside: • Statistical Thermodynamics and Kinetic Theory • Thermal Properties of Solids • Thermal Transport in Solids Micro/Nanostructures • Micro/Nanoscale Thermal Radiation • Radiative Properties of Nanomaterials

Nanoscale Energy Transport and Conversion

Author: Gang Chen
Publisher: Oxford University Press
ISBN: 9780199774685
Format: PDF, Kindle
Download Now
This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.

Near equilibrium Transport

Author: Mark Lundstrom
Publisher: World Scientific Publishing Company
ISBN: 9789814327787
Format: PDF, Kindle
Download Now
These lectures are designed to introduce students to the fundamentals of carrier transport in nano-devices using a novel, “bottom up approach” that agrees with traditional methods when devices are large, but which also works for nano-devices. The goal is to help students learn how to think about carrier transport at the nanoscale and also how the bottom up approach provides a new perspective to traditional concepts like mobility and drift-diffusion equations. The lectures are designed for engineers and scientists and others who need a working knowledge of near-equilibrium (“low-field” or “linear”) transport. Applications of the theory and measurement considerations are also addressed. The lectures serve as a starting point to an extensive set of instructional materials available online.

Fundamentals of Carrier Transport

Author: Mark Lundstrom
Publisher: Cambridge University Press
ISBN: 9780521637244
Format: PDF, ePub
Download Now
Fundamentals of Carrier Transport is an accessible introduction to the behaviour of charged carriers in semiconductors and semiconductor devices. It is written specifically for engineers and students without an extensive background in quantum mechanics and solid-state physics. This second edition contains many new and updated sections, including a completely new chapter on transport in ultrasmall devices. The author begins by covering a range of essential physical principles. He then goes on to cover both low- and high-field transport, scattering, transport in devices, and transport in mesoscopic systems. The use of Monte Carlo simulation methods is explained in detail. Many homework exercises are provided and there are a variety of worked examples. The book will be of great interest to graduate students of electrical engineering and applied physics. It will also be invaluable to practising engineers working on semiconductor device research and development.

Lessons From Nanoelectronics A New Perspective On Transport Second Edition Part A Basic Concepts

Author: Datta Supriyo
Publisher: World Scientific
ISBN: 9813209763
Format: PDF, ePub
Download Now
Everyone is familiar with the amazing performance of a modern smartphone, powered by a billion-plus nanotransistors, each having an active region that is barely a few hundred atoms long. The same amazing technology has also led to a deeper understanding of the nature of current flow and heat dissipation on an atomic scale which is of broad relevance to the general problems of non-equilibrium statistical mechanics that pervade many different fields. This book is based on a set of two online courses originally offered in 2012 on nanoHUB-U and more recently in 2015 on edX. In preparing the second edition the author decided to split it into parts A and B titled Basic Concepts and Quantum Transport respectively, along the lines of the two courses. A list of available video lectures corresponding to different sections of this volume is provided upfront. To make these lectures accessible to anyone in any branch of science or engineering, the author assume very little background beyond linear algebra and differential equations. However, the author will be discussing advanced concepts that should be of interest even to specialists, who are encouraged to look at his earlier books for additional technical details.

Fundamentals Of Atomic Force Microscopy Part I Foundations

Author: Reifenberger Ronald G
Publisher: World Scientific
ISBN: 9814630373
Format: PDF, ePub
Download Now
The atomic force microscope (AFM) is a highly interdisciplinary instrument that enables measurements of samples in liquid, vacuum or air with unprecedented resolution. The intelligent use of this instrument requires knowledge from many distinct fields of study. These lecture notes aim to provide advanced undergraduates and beginning graduates in all fields of science and engineering with the required knowledge to sensibly use an AFM. Relevant background material is often reviewed in depth and summarized in a pedagogical, self-paced style to provide a fundamental understanding of the scientific principles underlying the use and operation of an AFM. Useful as a study guide to “Fundamentals of AFM”, an online video course available at https://nanohub.org/courses/AFM1/Suitable for Graduate/Undergraduate Independent Reading and Research Course in AFM (with the combination of book and online videos)

Fundamentals of Nanotransistors

Author: Mark Lundstrom
Publisher: World Scientific Publishing Company
ISBN: 981457175X
Format: PDF, Kindle
Download Now
The transistor is the key enabler of modern electronics. Progress in transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to device physics are less and less suitable. These lectures describe a way of understanding MOSFETs and other transistors that is much more suitable than traditional approaches when the critical dimensions are measured in nanometers. It uses a novel, “bottom-up approach” that agrees with traditional methods when devices are large, but that also works for nano-devices. Surprisingly, the final result looks much like the traditional, textbook, transistor models, but the parameters in the equations have simple, clear interpretations at the nanoscale. The objective is to provide readers with an understanding of the essential physics of nanoscale transistors as well as some of the practical technological considerations and fundamental limits. This book is written in a way that is broadly accessible to students with only a very basic knowledge of semiconductor physics and electronic circuits. Complemented with online lecture by Prof Lundstrom: nanoHUB-U Nanoscale Transistor Contents:MOSFET Fundamentals:OverviewThe Transistor as a Black BoxThe MOSFET: A Barrier-Controlled DeviceMOSFET IV: Traditional ApproachMOSFET IV: The Virtual Source ModelMOS Electrostatics:Poisson Equation and the Depletion ApproximationGate Voltage and Surface PotentialMobile Charge: Bulk MOSMobile Charge: Extremely Thin SOI2D MOS ElectrostaticsThe VS Model RevisitedThe Ballistic MOSFET:The Landauer Approach to TransportThe Ballistic MOSFETThe Ballistic Injection VelocityConnecting the Ballistic and VS ModelsTransmission Theory of the MOSFET:Carrier Scattering and TransmissionTransmission Theory of the MOSFETConnecting the Transmission and VS ModelsVS Characterization of Transport in NanotransistorsLimits and Limitations Readership: Any student and professional with an undergraduate degree in the physical sciences or engineering.